/* Copyright 2012 Jun Wako <wakojun@gmail.com> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * scan matrix */ #include <stdint.h> #include <stdbool.h> #include "wait.h" #include "util.h" #include "matrix.h" #include "split_util.h" #include "config.h" #include "split_flags.h" #include "quantum.h" #include "debounce.h" #include "transport.h" #if (MATRIX_COLS <= 8) # define print_matrix_header() print("\nr/c 01234567\n") # define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row)) # define matrix_bitpop(i) bitpop(matrix[i]) # define ROW_SHIFTER ((uint8_t)1) #elif (MATRIX_COLS <= 16) # define print_matrix_header() print("\nr/c 0123456789ABCDEF\n") # define print_matrix_row(row) print_bin_reverse16(matrix_get_row(row)) # define matrix_bitpop(i) bitpop16(matrix[i]) # define ROW_SHIFTER ((uint16_t)1) #elif (MATRIX_COLS <= 32) # define print_matrix_header() print("\nr/c 0123456789ABCDEF0123456789ABCDEF\n") # define print_matrix_row(row) print_bin_reverse32(matrix_get_row(row)) # define matrix_bitpop(i) bitpop32(matrix[i]) # define ROW_SHIFTER ((uint32_t)1) #endif #define ERROR_DISCONNECT_COUNT 5 //#define ROWS_PER_HAND (MATRIX_ROWS / 2) #ifdef DIRECT_PINS static pin_t direct_pins[MATRIX_ROWS][MATRIX_COLS] = DIRECT_PINS; #else static pin_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS; static pin_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS; #endif /* matrix state(1:on, 0:off) */ static matrix_row_t matrix[MATRIX_ROWS]; static matrix_row_t raw_matrix[ROWS_PER_HAND]; // row offsets for each hand uint8_t thisHand, thatHand; // user-defined overridable functions __attribute__((weak)) void matrix_init_kb(void) { matrix_init_user(); } __attribute__((weak)) void matrix_scan_kb(void) { matrix_scan_user(); } __attribute__((weak)) void matrix_init_user(void) {} __attribute__((weak)) void matrix_scan_user(void) {} __attribute__((weak)) void matrix_slave_scan_user(void) {} // helper functions inline uint8_t matrix_rows(void) { return MATRIX_ROWS; } inline uint8_t matrix_cols(void) { return MATRIX_COLS; } bool matrix_is_modified(void) { if (debounce_active()) return false; return true; } inline bool matrix_is_on(uint8_t row, uint8_t col) { return (matrix[row] & ((matrix_row_t)1 << col)); } inline matrix_row_t matrix_get_row(uint8_t row) { return matrix[row]; } void matrix_print(void) { print_matrix_header(); for (uint8_t row = 0; row < MATRIX_ROWS; row++) { phex(row); print(": "); print_matrix_row(row); print("\n"); } } uint8_t matrix_key_count(void) { uint8_t count = 0; for (uint8_t i = 0; i < MATRIX_ROWS; i++) { count += matrix_bitpop(i); } return count; } // matrix code #ifdef DIRECT_PINS static void init_pins(void) { for (int row = 0; row < MATRIX_ROWS; row++) { for (int col = 0; col < MATRIX_COLS; col++) { pin_t pin = direct_pins[row][col]; if (pin != NO_PIN) { setPinInputHigh(pin); } } } } static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row) { matrix_row_t last_row_value = current_matrix[current_row]; current_matrix[current_row] = 0; for (uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) { pin_t pin = direct_pins[current_row][col_index]; if (pin != NO_PIN) { current_matrix[current_row] |= readPin(pin) ? 0 : (ROW_SHIFTER << col_index); } } return (last_row_value != current_matrix[current_row]); } #elif (DIODE_DIRECTION == COL2ROW) static void select_row(uint8_t row) { setPinOutput(row_pins[row]); writePinLow(row_pins[row]); } static void unselect_row(uint8_t row) { setPinInputHigh(row_pins[row]); } static void unselect_rows(void) { for (uint8_t x = 0; x < ROWS_PER_HAND; x++) { setPinInputHigh(row_pins[x]); } } static void init_pins(void) { unselect_rows(); for (uint8_t x = 0; x < MATRIX_COLS; x++) { setPinInputHigh(col_pins[x]); } } static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row) { // Store last value of row prior to reading matrix_row_t last_row_value = current_matrix[current_row]; // Clear data in matrix row current_matrix[current_row] = 0; // Select row and wait for row selecton to stabilize select_row(current_row); wait_us(30); // For each col... for (uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) { // Populate the matrix row with the state of the col pin current_matrix[current_row] |= readPin(col_pins[col_index]) ? 0 : (ROW_SHIFTER << col_index); } // Unselect row unselect_row(current_row); return (last_row_value != current_matrix[current_row]); } #elif (DIODE_DIRECTION == ROW2COL) static void select_col(uint8_t col) { setPinOutput(col_pins[col]); writePinLow(col_pins[col]); } static void unselect_col(uint8_t col) { setPinInputHigh(col_pins[col]); } static void unselect_cols(void) { for (uint8_t x = 0; x < MATRIX_COLS; x++) { setPinInputHigh(col_pins[x]); } } static void init_pins(void) { unselect_cols(); for (uint8_t x = 0; x < ROWS_PER_HAND; x++) { setPinInputHigh(row_pins[x]); } } static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col) { bool matrix_changed = false; // Select col and wait for col selecton to stabilize select_col(current_col); wait_us(30); // For each row... for (uint8_t row_index = 0; row_index < ROWS_PER_HAND; row_index++) { // Store last value of row prior to reading matrix_row_t last_row_value = current_matrix[row_index]; // Check row pin state if (readPin(row_pins[row_index])) { // Pin HI, clear col bit current_matrix[row_index] &= ~(ROW_SHIFTER << current_col); } else { // Pin LO, set col bit current_matrix[row_index] |= (ROW_SHIFTER << current_col); } // Determine if the matrix changed state if ((last_row_value != current_matrix[row_index]) && !(matrix_changed)) { matrix_changed = true; } } // Unselect col unselect_col(current_col); return matrix_changed; } #endif void matrix_init(void) { debug_enable = true; debug_matrix = true; debug_mouse = true; // Set pinout for right half if pinout for that half is defined if (!isLeftHand) { #ifdef MATRIX_ROW_PINS_RIGHT const uint8_t row_pins_right[MATRIX_ROWS] = MATRIX_ROW_PINS_RIGHT; for (uint8_t i = 0; i < MATRIX_ROWS; i++) { row_pins[i] = row_pins_right[i]; } #endif #ifdef MATRIX_COL_PINS_RIGHT const uint8_t col_pins_right[MATRIX_COLS] = MATRIX_COL_PINS_RIGHT; for (uint8_t i = 0; i < MATRIX_COLS; i++) { col_pins[i] = col_pins_right[i]; } #endif } thisHand = isLeftHand ? 0 : (ROWS_PER_HAND); thatHand = ROWS_PER_HAND - thisHand; // initialize key pins init_pins(); // initialize matrix state: all keys off for (uint8_t i = 0; i < MATRIX_ROWS; i++) { matrix[i] = 0; } debounce_init(ROWS_PER_HAND); matrix_init_quantum(); } uint8_t _matrix_scan(void) { bool changed = false; #if defined(DIRECT_PINS) || (DIODE_DIRECTION == COL2ROW) // Set row, read cols for (uint8_t current_row = 0; current_row < ROWS_PER_HAND; current_row++) { changed |= read_cols_on_row(raw_matrix, current_row); } #elif (DIODE_DIRECTION == ROW2COL) // Set col, read rows for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) { changed |= read_rows_on_col(raw_matrix, current_col); } #endif debounce(raw_matrix, matrix + thisHand, ROWS_PER_HAND, changed); return 1; } uint8_t matrix_scan(void) { uint8_t ret = _matrix_scan(); if (is_keyboard_master()) { static uint8_t error_count; if (!transport_master(matrix + thatHand)) { error_count++; if (error_count > ERROR_DISCONNECT_COUNT) { // reset other half if disconnected for (int i = 0; i < ROWS_PER_HAND; ++i) { matrix[thatHand + i] = 0; } } } else { error_count = 0; } matrix_scan_quantum(); } else { transport_slave(matrix + thisHand); matrix_slave_scan_user(); } return ret; }