#include "atomic.h" __attribute__ ((weak)) void matrix_init_user(void) { // leave this function blank - it can be defined in a keymap file }; __attribute__ ((weak)) void matrix_scan_user(void) { // leave this function blank - it can be defined in a keymap file } __attribute__ ((weak)) bool process_action_user(keyrecord_t *record) { // leave this function blank - it can be defined in a keymap file return true; } __attribute__ ((weak)) void led_set_user(uint8_t usb_led) { // leave this function blank - it can be defined in a keymap file } void matrix_init_kb(void) { // put your keyboard start-up code here // runs once when the firmware starts up MCUCR |= (1<<JTD); MCUCR |= (1<<JTD); #ifdef BACKLIGHT_ENABLE backlight_init_ports(); #endif // Turn status LED on DDRE |= (1<<6); PORTE |= (1<<6); matrix_init_user(); } void matrix_scan_kb(void) { // put your looping keyboard code here // runs every cycle (a lot) matrix_scan_user(); } bool process_action_kb(keyrecord_t *record) { // put your per-action keyboard code here // runs for every action, just before processing by the firmware return process_action_user(record); } void led_set_kb(uint8_t usb_led) { // put your keyboard LED indicator (ex: Caps Lock LED) toggling code here led_set_user(usb_led); } #ifdef BACKLIGHT_ENABLE #define CHANNEL OCR1C #define BREATHING_NO_HALT 0 #define BREATHING_HALT_OFF 1 #define BREATHING_HALT_ON 2 static uint8_t breath_intensity; static uint8_t breath_speed; static uint16_t breathing_index; static uint8_t breathing_halt; void backlight_init_ports() { // Setup PB7 as output and output low. DDRB |= (1<<7); PORTB &= ~(1<<7); // Use full 16-bit resolution. ICR1 = 0xFFFF; // I could write a wall of text here to explain... but TL;DW // Go read the ATmega32u4 datasheet. // And this: http://blog.saikoled.com/post/43165849837/secret-konami-cheat-code-to-high-resolution-pwm-on // Pin PB7 = OCR1C (Timer 1, Channel C) // Compare Output Mode = Clear on compare match, Channel C = COM1C1=1 COM1C0=0 // (i.e. start high, go low when counter matches.) // WGM Mode 14 (Fast PWM) = WGM13=1 WGM12=1 WGM11=1 WGM10=0 // Clock Select = clk/1 (no prescaling) = CS12=0 CS11=0 CS10=1 TCCR1A = _BV(COM1C1) | _BV(WGM11); // = 0b00001010; TCCR1B = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // = 0b00011001; backlight_init(); breathing_defaults(); } void backlight_set(uint8_t level) { // Prevent backlight blink on lowest level PORTB &= ~(_BV(PORTB7)); if ( level == 0 ) { // Turn off PWM control on PB7, revert to output low. TCCR1A &= ~(_BV(COM1C1)); // Set the brightness to 0 CHANNEL = 0x0; } else if ( level >= BACKLIGHT_LEVELS ) { // Turn on PWM control of PB7 TCCR1A |= _BV(COM1C1); // Set the brightness to max CHANNEL = 0xFFFF; } else { // Turn on PWM control of PB7 TCCR1A |= _BV(COM1C1); // Set the brightness CHANNEL = 0xFFFF >> ((BACKLIGHT_LEVELS - level) * ((BACKLIGHT_LEVELS + 1) / 2)); } breathing_intensity_default(); } void breathing_enable(void) { if (get_backlight_level() == 0) { breathing_index = 0; } else { // Set breathing_index to be at the midpoint (brightest point) breathing_index = 0x20 << breath_speed; } breathing_halt = BREATHING_NO_HALT; // Enable breathing interrupt TIMSK1 |= _BV(OCIE1A); } void breathing_pulse(void) { if (get_backlight_level() == 0) { breathing_index = 0; } else { // Set breathing_index to be at the midpoint + 1 (brightest point) breathing_index = 0x21 << breath_speed; } breathing_halt = BREATHING_HALT_ON; // Enable breathing interrupt TIMSK1 |= _BV(OCIE1A); } void breathing_disable(void) { // Disable breathing interrupt TIMSK1 &= ~_BV(OCIE1A); backlight_set(get_backlight_level()); } void breathing_self_disable(void) { if (get_backlight_level() == 0) { breathing_halt = BREATHING_HALT_OFF; } else { breathing_halt = BREATHING_HALT_ON; } //backlight_set(get_backlight_level()); } void breathing_toggle(void) { if (!is_breathing()) { if (get_backlight_level() == 0) { breathing_index = 0; } else { // Set breathing_index to be at the midpoint + 1 (brightest point) breathing_index = 0x21 << breath_speed; } breathing_halt = BREATHING_NO_HALT; } // Toggle breathing interrupt TIMSK1 ^= _BV(OCIE1A); // Restore backlight level if (!is_breathing()) { backlight_set(get_backlight_level()); } } bool is_breathing(void) { return (TIMSK1 && _BV(OCIE1A)); } void breathing_intensity_default(void) { //breath_intensity = (uint8_t)((uint16_t)100 * (uint16_t)get_backlight_level() / (uint16_t)BACKLIGHT_LEVELS); breath_intensity = ((BACKLIGHT_LEVELS - get_backlight_level()) * ((BACKLIGHT_LEVELS + 1) / 2)); } void breathing_intensity_set(uint8_t value) { breath_intensity = value; } void breathing_speed_default(void) { breath_speed = 4; } void breathing_speed_set(uint8_t value) { bool is_breathing_now = is_breathing(); uint8_t old_breath_speed = breath_speed; if (is_breathing_now) { // Disable breathing interrupt TIMSK1 &= ~_BV(OCIE1A); } breath_speed = value; if (is_breathing_now) { // Adjust index to account for new speed breathing_index = (( (uint8_t)( (breathing_index) >> old_breath_speed ) ) & 0x3F) << breath_speed; // Enable breathing interrupt TIMSK1 |= _BV(OCIE1A); } } void breathing_speed_inc(uint8_t value) { if ((uint16_t)(breath_speed - value) > 10 ) { breathing_speed_set(0); } else { breathing_speed_set(breath_speed - value); } } void breathing_speed_dec(uint8_t value) { if ((uint16_t)(breath_speed + value) > 10 ) { breathing_speed_set(10); } else { breathing_speed_set(breath_speed + value); } } void breathing_defaults(void) { breathing_intensity_default(); breathing_speed_default(); breathing_halt = BREATHING_NO_HALT; } /* Breathing Sleep LED brighness(PWM On period) table * (64[steps] * 4[duration]) / 64[PWM periods/s] = 4 second breath cycle * * http://www.wolframalpha.com/input/?i=%28sin%28+x%2F64*pi%29**8+*+255%2C+x%3D0+to+63 * (0..63).each {|x| p ((sin(x/64.0*PI)**8)*255).to_i } */ static const uint8_t breathing_table[64] PROGMEM = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 6, 10, 15, 23, 32, 44, 58, 74, 93, 113, 135, 157, 179, 199, 218, 233, 245, 252, 255, 252, 245, 233, 218, 199, 179, 157, 135, 113, 93, 74, 58, 44, 32, 23, 15, 10, 6, 4, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; ISR(TIMER1_COMPA_vect) { // CHANNEL = (pgm_read_byte(&breathing_table[ ( (uint8_t)( (breathing_index++) >> breath_speed ) ) & 0x3F ] )) * breath_intensity; uint8_t local_index = ( (uint8_t)( (breathing_index++) >> breath_speed ) ) & 0x3F; if (((breathing_halt == BREATHING_HALT_ON) && (local_index == 0x20)) || ((breathing_halt == BREATHING_HALT_OFF) && (local_index == 0x3F))) { // Disable breathing interrupt TIMSK1 &= ~_BV(OCIE1A); } CHANNEL = (uint16_t)(((uint16_t)pgm_read_byte(&breathing_table[local_index]) * 257)) >> breath_intensity; } #endif