1
0
Fork 0
forked from forks/qmk_firmware
qmk_firmware/platforms/avr/mcu_selection.mk
2023-01-29 07:40:47 +11:00

96 lines
3.7 KiB
Makefile

ifneq (,$(filter $(MCU),at90usb162 atmega16u2 atmega32u2 atmega16u4 atmega32u4 at90usb646 at90usb647 at90usb1286 at90usb1287))
PROTOCOL = LUFA
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU ?= 16000000
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB ?= $(F_CPU)
# Interrupt driven control endpoint task
ifeq (,$(filter $(NO_INTERRUPT_CONTROL_ENDPOINT),yes))
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
endif
ifneq (,$(filter $(MCU),at90usb162 atmega16u2 atmega32u2))
NO_I2C = yes
endif
endif
ifneq (,$(filter $(MCU),atmega32a))
# MCU name for avrdude
AVRDUDE_MCU = m32
PROTOCOL = VUSB
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
F_CPU ?= 12000000
endif
ifneq (,$(filter $(MCU),atmega328p))
# MCU name for avrdude
AVRDUDE_MCU = m328p
PROTOCOL = VUSB
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
F_CPU ?= 16000000
endif
ifneq (,$(filter $(MCU),atmega328))
# MCU name for avrdude
AVRDUDE_MCU = m328
PROTOCOL = VUSB
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
F_CPU ?= 16000000
endif
ifneq (,$(filter $(MCU),attiny85))
PROTOCOL = VUSB
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
F_CPU ?= 16500000
endif