forked from forks/qmk_firmware
172e6a7030
* Extensible split data sync capability through transactions. - Split common transport has been split up between the transport layer and data layer. - Split "transactions" model used, with convergence between I2C and serial data definitions. - Slave matrix "generation count" is used to determine if the full slave matrix needs to be retrieved. - Encoders get the same "generation count" treatment. - All other blocks of data are synchronised when a change is detected. - All transmissions have a globally-configurable deadline before a transmission is forced (`FORCED_SYNC_THROTTLE_MS`, default 100ms). - Added atomicity for all core-synced data, preventing partial updates - Added retries to AVR i2c_master's i2c_start, to minimise the number of failed transactions when interrupts are disabled on the slave due to atomicity checks. - Some keyboards have had slight modifications made in order to ensure that they still build due to firmware size restrictions. * Fixup LED_MATRIX compile. * Parameterise ERROR_DISCONNECT_COUNT.
198 lines
6.4 KiB
C
198 lines
6.4 KiB
C
/* Copyright 2021 QMK
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "serial_usart.h"
|
|
|
|
#ifndef USE_GPIOV1
|
|
// The default PAL alternate modes are used to signal that the pins are used for USART
|
|
# ifndef SERIAL_USART_TX_PAL_MODE
|
|
# define SERIAL_USART_TX_PAL_MODE 7
|
|
# endif
|
|
#endif
|
|
|
|
#ifndef SERIAL_USART_DRIVER
|
|
# define SERIAL_USART_DRIVER SD1
|
|
#endif
|
|
|
|
#ifdef SOFT_SERIAL_PIN
|
|
# define SERIAL_USART_TX_PIN SOFT_SERIAL_PIN
|
|
#endif
|
|
|
|
static inline msg_t sdWriteHalfDuplex(SerialDriver* driver, uint8_t* data, uint8_t size) {
|
|
msg_t ret = sdWrite(driver, data, size);
|
|
|
|
// Half duplex requires us to read back the data we just wrote - just throw it away
|
|
uint8_t dump[size];
|
|
sdRead(driver, dump, size);
|
|
|
|
return ret;
|
|
}
|
|
#undef sdWrite
|
|
#define sdWrite sdWriteHalfDuplex
|
|
|
|
static inline msg_t sdWriteTimeoutHalfDuplex(SerialDriver* driver, uint8_t* data, uint8_t size, uint32_t timeout) {
|
|
msg_t ret = sdWriteTimeout(driver, data, size, timeout);
|
|
|
|
// Half duplex requires us to read back the data we just wrote - just throw it away
|
|
uint8_t dump[size];
|
|
sdReadTimeout(driver, dump, size, timeout);
|
|
|
|
return ret;
|
|
}
|
|
#undef sdWriteTimeout
|
|
#define sdWriteTimeout sdWriteTimeoutHalfDuplex
|
|
|
|
static inline void sdClear(SerialDriver* driver) {
|
|
while (sdGetTimeout(driver, TIME_IMMEDIATE) != MSG_TIMEOUT) {
|
|
// Do nothing with the data
|
|
}
|
|
}
|
|
|
|
static SerialConfig sdcfg = {
|
|
(SERIAL_USART_SPEED), // speed - mandatory
|
|
(SERIAL_USART_CR1), // CR1
|
|
(SERIAL_USART_CR2), // CR2
|
|
(SERIAL_USART_CR3) // CR3
|
|
};
|
|
|
|
void handle_soft_serial_slave(void);
|
|
|
|
/*
|
|
* This thread runs on the slave and responds to transactions initiated
|
|
* by the master
|
|
*/
|
|
static THD_WORKING_AREA(waSlaveThread, 2048);
|
|
static THD_FUNCTION(SlaveThread, arg) {
|
|
(void)arg;
|
|
chRegSetThreadName("slave_transport");
|
|
|
|
while (true) {
|
|
handle_soft_serial_slave();
|
|
}
|
|
}
|
|
|
|
__attribute__((weak)) void usart_init(void) {
|
|
#if defined(USE_GPIOV1)
|
|
palSetLineMode(SERIAL_USART_TX_PIN, PAL_MODE_STM32_ALTERNATE_OPENDRAIN);
|
|
#else
|
|
palSetLineMode(SERIAL_USART_TX_PIN, PAL_MODE_ALTERNATE(SERIAL_USART_TX_PAL_MODE) | PAL_STM32_OTYPE_OPENDRAIN);
|
|
#endif
|
|
|
|
#if defined(USART_REMAP)
|
|
USART_REMAP;
|
|
#endif
|
|
}
|
|
|
|
void usart_master_init(void) {
|
|
usart_init();
|
|
|
|
sdcfg.cr3 |= USART_CR3_HDSEL;
|
|
sdStart(&SERIAL_USART_DRIVER, &sdcfg);
|
|
}
|
|
|
|
void usart_slave_init(void) {
|
|
usart_init();
|
|
|
|
sdcfg.cr3 |= USART_CR3_HDSEL;
|
|
sdStart(&SERIAL_USART_DRIVER, &sdcfg);
|
|
|
|
// Start transport thread
|
|
chThdCreateStatic(waSlaveThread, sizeof(waSlaveThread), HIGHPRIO, SlaveThread, NULL);
|
|
}
|
|
|
|
void soft_serial_initiator_init(void) { usart_master_init(); }
|
|
|
|
void soft_serial_target_init(void) { usart_slave_init(); }
|
|
|
|
void handle_soft_serial_slave(void) {
|
|
uint8_t sstd_index = sdGet(&SERIAL_USART_DRIVER); // first chunk is always transaction id
|
|
split_transaction_desc_t* trans = &split_transaction_table[sstd_index];
|
|
|
|
// Always write back the sstd_index as part of a basic handshake
|
|
sstd_index ^= HANDSHAKE_MAGIC;
|
|
sdWrite(&SERIAL_USART_DRIVER, &sstd_index, sizeof(sstd_index));
|
|
|
|
if (trans->initiator2target_buffer_size) {
|
|
sdRead(&SERIAL_USART_DRIVER, split_trans_initiator2target_buffer(trans), trans->initiator2target_buffer_size);
|
|
}
|
|
|
|
// Allow any slave processing to occur
|
|
if (trans->slave_callback) {
|
|
trans->slave_callback(trans->initiator2target_buffer_size, split_trans_initiator2target_buffer(trans), trans->target2initiator_buffer_size, split_trans_target2initiator_buffer(trans));
|
|
}
|
|
|
|
if (trans->target2initiator_buffer_size) {
|
|
sdWrite(&SERIAL_USART_DRIVER, split_trans_target2initiator_buffer(trans), trans->target2initiator_buffer_size);
|
|
}
|
|
|
|
if (trans->status) {
|
|
*trans->status = TRANSACTION_ACCEPTED;
|
|
}
|
|
}
|
|
|
|
/////////
|
|
// start transaction by initiator
|
|
//
|
|
// int soft_serial_transaction(int sstd_index)
|
|
//
|
|
// Returns:
|
|
// TRANSACTION_END
|
|
// TRANSACTION_NO_RESPONSE
|
|
// TRANSACTION_DATA_ERROR
|
|
int soft_serial_transaction(int index) {
|
|
uint8_t sstd_index = index;
|
|
|
|
if (sstd_index > NUM_TOTAL_TRANSACTIONS) return TRANSACTION_TYPE_ERROR;
|
|
split_transaction_desc_t* trans = &split_transaction_table[sstd_index];
|
|
msg_t res = 0;
|
|
|
|
if (!trans->status) return TRANSACTION_TYPE_ERROR; // not registered
|
|
|
|
sdClear(&SERIAL_USART_DRIVER);
|
|
|
|
// First chunk is always transaction id
|
|
sdWriteTimeout(&SERIAL_USART_DRIVER, &sstd_index, sizeof(sstd_index), TIME_MS2I(SERIAL_USART_TIMEOUT));
|
|
|
|
uint8_t sstd_index_shake = 0xFF;
|
|
|
|
// Which we always read back first so that we can error out correctly
|
|
// - due to the half duplex limitations on return codes, we always have to read *something*
|
|
// - without the read, write only transactions *always* succeed, even during the boot process where the slave is not ready
|
|
res = sdReadTimeout(&SERIAL_USART_DRIVER, &sstd_index_shake, sizeof(sstd_index_shake), TIME_MS2I(SERIAL_USART_TIMEOUT));
|
|
if (res < 0 || (sstd_index_shake != (sstd_index ^ HANDSHAKE_MAGIC))) {
|
|
dprintf("serial::usart_shake NO_RESPONSE\n");
|
|
return TRANSACTION_NO_RESPONSE;
|
|
}
|
|
|
|
if (trans->initiator2target_buffer_size) {
|
|
res = sdWriteTimeout(&SERIAL_USART_DRIVER, split_trans_initiator2target_buffer(trans), trans->initiator2target_buffer_size, TIME_MS2I(SERIAL_USART_TIMEOUT));
|
|
if (res < 0) {
|
|
dprintf("serial::usart_transmit NO_RESPONSE\n");
|
|
return TRANSACTION_NO_RESPONSE;
|
|
}
|
|
}
|
|
|
|
if (trans->target2initiator_buffer_size) {
|
|
res = sdReadTimeout(&SERIAL_USART_DRIVER, split_trans_target2initiator_buffer(trans), trans->target2initiator_buffer_size, TIME_MS2I(SERIAL_USART_TIMEOUT));
|
|
if (res < 0) {
|
|
dprintf("serial::usart_receive NO_RESPONSE\n");
|
|
return TRANSACTION_NO_RESPONSE;
|
|
}
|
|
}
|
|
|
|
return TRANSACTION_END;
|
|
}
|