1
0
Fork 0
forked from forks/qmk_firmware
qmk_firmware/lib/usbhost/USB_Host_Shield_2.0/usbhost.h

530 lines
18 KiB
C++

/* Copyright (C) 2011 Circuits At Home, LTD. All rights reserved.
This software may be distributed and modified under the terms of the GNU
General Public License version 2 (GPL2) as published by the Free Software
Foundation and appearing in the file GPL2.TXT included in the packaging of
this file. Please note that GPL2 Section 2[b] requires that all works based
on this software must also be made publicly available under the terms of
the GPL2 ("Copyleft").
Contact information
-------------------
Circuits At Home, LTD
Web : http://www.circuitsathome.com
e-mail : support@circuitsathome.com
*/
/* MAX3421E-based USB Host Library header file */
#if !defined(_usb_h_) || defined(_USBHOST_H_)
#error "Never include usbhost.h directly; include Usb.h instead"
#else
#define _USBHOST_H_
#if USING_SPI4TEENSY3
#include <spi4teensy3.h>
#include <sys/types.h>
#endif
/* SPI initialization */
template< typename SPI_CLK, typename SPI_MOSI, typename SPI_MISO, typename SPI_SS > class SPi {
public:
#if USING_SPI4TEENSY3
static void init() {
// spi4teensy3 inits everything for us, except /SS
// CLK, MOSI and MISO are hard coded for now.
// spi4teensy3::init(0,0,0); // full speed, cpol 0, cpha 0
spi4teensy3::init(); // full speed, cpol 0, cpha 0
SPI_SS::SetDirWrite();
SPI_SS::Set();
}
#elif SPI_HAS_TRANSACTION
static void init() {
SPI.begin(); // The SPI library with transaction will take care of setting up the pins - settings is set in beginTransaction()
}
#elif !defined(SPDR)
static void init() {
SPI_SS::SetDirWrite();
SPI_SS::Set();
SPI.begin();
#if defined(__MIPSEL__)
SPI.setClockDivider(1);
#elif defined(__ARDUINO_X86__)
#ifdef SPI_CLOCK_1M // Hack used to check if setClockSpeed is available
SPI.setClockSpeed(12000000); // The MAX3421E can handle up to 26MHz, but in practice this was the maximum that I could reliably use
#else
SPI.setClockDivider(SPI_CLOCK_DIV2); // This will set the SPI frequency to 8MHz - it could be higher, but it is not supported in the old API
#endif
#else
SPI.setClockDivider(4); // Set speed to 84MHz/4=21MHz - the MAX3421E can handle up to 26MHz
#endif
}
#elif defined(RBL_NRF51822)
static void init() {
SPI_SS::SetDirWrite();
SPI_SS::Set();
SPI.begin();
// SPI.setFrequency(SPI_FREQUENCY_8M);
}
#else
static void init() {
//uint8_t tmp;
SPI_CLK::SetDirWrite();
SPI_MOSI::SetDirWrite();
SPI_MISO::SetDirRead();
SPI_SS::SetDirWrite();
/* mode 00 (CPOL=0, CPHA=0) master, fclk/2. Mode 11 (CPOL=11, CPHA=11) is also supported by MAX3421E */
SPCR = 0x50;
SPSR = 0x01; // 0x01
/**/
//tmp = SPSR;
//tmp = SPDR;
}
#endif
};
/* SPI pin definitions. see avrpins.h */
#if defined(__AVR_ATmega1280__) || (__AVR_ATmega2560__) || defined(__AVR_ATmega32U4__) || defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
typedef SPi< Pb1, Pb2, Pb3, Pb0 > spi;
#elif defined(__AVR_ATmega168__) || defined(__AVR_ATmega328P__)
typedef SPi< Pb5, Pb3, Pb4, Pb2 > spi;
#elif defined(__AVR_ATmega644__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__)
typedef SPi< Pb7, Pb5, Pb6, Pb4 > spi;
#elif (defined(CORE_TEENSY) && (defined(__MK20DX128__) || defined(__MK20DX256__))) || defined(__ARDUINO_X86__) || defined(__MIPSEL__)
typedef SPi< P13, P11, P12, P10 > spi;
#elif defined(ARDUINO_SAM_DUE) && defined(__SAM3X8E__)
typedef SPi< P76, P75, P74, P10 > spi;
#elif defined(RBL_NRF51822)
typedef SPi< P16, P18, P17, P10 > spi;
#else
#error "No SPI entry in usbhost.h"
#endif
typedef enum {
vbus_on = 0,
vbus_off = GPX_VBDET
} VBUS_t;
template< typename SPI_SS, typename INTR > class MAX3421e /* : public spi */ {
static uint8_t vbusState;
public:
MAX3421e();
void regWr(uint8_t reg, uint8_t data);
uint8_t* bytesWr(uint8_t reg, uint8_t nbytes, uint8_t* data_p);
void gpioWr(uint8_t data);
uint8_t regRd(uint8_t reg);
uint8_t* bytesRd(uint8_t reg, uint8_t nbytes, uint8_t* data_p);
uint8_t gpioRd();
uint16_t reset();
int8_t Init();
int8_t Init(int mseconds);
void vbusPower(VBUS_t state) {
regWr(rPINCTL, (bmFDUPSPI | bmINTLEVEL | state));
}
uint8_t getVbusState(void) {
return vbusState;
};
void busprobe();
uint8_t GpxHandler();
uint8_t IntHandler();
uint8_t Task();
};
template< typename SPI_SS, typename INTR >
uint8_t MAX3421e< SPI_SS, INTR >::vbusState = 0;
/* constructor */
template< typename SPI_SS, typename INTR >
MAX3421e< SPI_SS, INTR >::MAX3421e() {
// Leaving ADK hardware setup in here, for now. This really belongs with the other parts.
#ifdef BOARD_MEGA_ADK
// For Mega ADK, which has a Max3421e on-board, set MAX_RESET to output mode, and then set it to HIGH
P55::SetDirWrite();
P55::Set();
#endif
};
/* write single byte into MAX3421 register */
template< typename SPI_SS, typename INTR >
void MAX3421e< SPI_SS, INTR >::regWr(uint8_t reg, uint8_t data) {
XMEM_ACQUIRE_SPI();
#if SPI_HAS_TRANSACTION
SPI.beginTransaction(SPISettings(26000000, MSBFIRST, SPI_MODE0)); // The MAX3421E can handle up to 26MHz, use MSB First and SPI mode 0
#endif
SPI_SS::Clear();
#if USING_SPI4TEENSY3
uint8_t c[2];
c[0] = reg | 0x02;
c[1] = data;
spi4teensy3::send(c, 2);
#elif SPI_HAS_TRANSACTION
uint8_t c[2];
c[0] = reg | 0x02;
c[1] = data;
SPI.transfer(c, 2);
#elif !defined(SPDR)
SPI.transfer(reg | 0x02);
SPI.transfer(data);
#else
SPDR = (reg | 0x02);
while(!(SPSR & (1 << SPIF)));
SPDR = data;
while(!(SPSR & (1 << SPIF)));
#endif
SPI_SS::Set();
#if SPI_HAS_TRANSACTION
SPI.endTransaction();
#endif
XMEM_RELEASE_SPI();
return;
};
/* multiple-byte write */
/* returns a pointer to memory position after last written */
template< typename SPI_SS, typename INTR >
uint8_t* MAX3421e< SPI_SS, INTR >::bytesWr(uint8_t reg, uint8_t nbytes, uint8_t* data_p) {
XMEM_ACQUIRE_SPI();
#if SPI_HAS_TRANSACTION
SPI.beginTransaction(SPISettings(26000000, MSBFIRST, SPI_MODE0)); // The MAX3421E can handle up to 26MHz, use MSB First and SPI mode 0
#endif
SPI_SS::Clear();
#if USING_SPI4TEENSY3
spi4teensy3::send(reg | 0x02);
spi4teensy3::send(data_p, nbytes);
data_p += nbytes;
#elif SPI_HAS_TRANSACTION
SPI.transfer(reg | 0x02);
SPI.transfer(data_p, nbytes);
data_p += nbytes;
#elif defined(__ARDUINO_X86__)
SPI.transfer(reg | 0x02);
SPI.transferBuffer(data_p, NULL, nbytes);
data_p += nbytes;
#elif !defined(SPDR)
SPI.transfer(reg | 0x02);
while(nbytes) {
SPI.transfer(*data_p);
nbytes--;
data_p++; // advance data pointer
}
#else
SPDR = (reg | 0x02); //set WR bit and send register number
while(nbytes) {
while(!(SPSR & (1 << SPIF))); //check if previous byte was sent
SPDR = (*data_p); // send next data byte
nbytes--;
data_p++; // advance data pointer
}
while(!(SPSR & (1 << SPIF)));
#endif
SPI_SS::Set();
#if SPI_HAS_TRANSACTION
SPI.endTransaction();
#endif
XMEM_RELEASE_SPI();
return ( data_p);
}
/* GPIO write */
/*GPIO byte is split between 2 registers, so two writes are needed to write one byte */
/* GPOUT bits are in the low nibble. 0-3 in IOPINS1, 4-7 in IOPINS2 */
template< typename SPI_SS, typename INTR >
void MAX3421e< SPI_SS, INTR >::gpioWr(uint8_t data) {
regWr(rIOPINS1, data);
data >>= 4;
regWr(rIOPINS2, data);
return;
}
/* single host register read */
template< typename SPI_SS, typename INTR >
uint8_t MAX3421e< SPI_SS, INTR >::regRd(uint8_t reg) {
XMEM_ACQUIRE_SPI();
#if SPI_HAS_TRANSACTION
SPI.beginTransaction(SPISettings(26000000, MSBFIRST, SPI_MODE0)); // The MAX3421E can handle up to 26MHz, use MSB First and SPI mode 0
#endif
SPI_SS::Clear();
#if USING_SPI4TEENSY3
spi4teensy3::send(reg);
uint8_t rv = spi4teensy3::receive();
SPI_SS::Set();
#elif !defined(SPDR) || SPI_HAS_TRANSACTION
SPI.transfer(reg);
uint8_t rv = SPI.transfer(0); // Send empty byte
SPI_SS::Set();
#else
SPDR = reg;
while(!(SPSR & (1 << SPIF)));
SPDR = 0; // Send empty byte
while(!(SPSR & (1 << SPIF)));
SPI_SS::Set();
uint8_t rv = SPDR;
#endif
#if SPI_HAS_TRANSACTION
SPI.endTransaction();
#endif
XMEM_RELEASE_SPI();
return (rv);
}
/* multiple-byte register read */
/* returns a pointer to a memory position after last read */
template< typename SPI_SS, typename INTR >
uint8_t* MAX3421e< SPI_SS, INTR >::bytesRd(uint8_t reg, uint8_t nbytes, uint8_t* data_p) {
XMEM_ACQUIRE_SPI();
#if SPI_HAS_TRANSACTION
SPI.beginTransaction(SPISettings(26000000, MSBFIRST, SPI_MODE0)); // The MAX3421E can handle up to 26MHz, use MSB First and SPI mode 0
#endif
SPI_SS::Clear();
#if USING_SPI4TEENSY3
spi4teensy3::send(reg);
spi4teensy3::receive(data_p, nbytes);
data_p += nbytes;
#elif SPI_HAS_TRANSACTION
SPI.transfer(reg);
memset(data_p, 0, nbytes); // Make sure we send out empty bytes
SPI.transfer(data_p, nbytes);
data_p += nbytes;
#elif defined(__ARDUINO_X86__)
SPI.transfer(reg);
SPI.transferBuffer(NULL, data_p, nbytes);
data_p += nbytes;
#elif !defined(SPDR)
SPI.transfer(reg);
while(nbytes) {
*data_p++ = SPI.transfer(0);
nbytes--;
}
#else
SPDR = reg;
while(!(SPSR & (1 << SPIF))); //wait
while(nbytes) {
SPDR = 0; // Send empty byte
nbytes--;
while(!(SPSR & (1 << SPIF)));
#if 0
{
*data_p = SPDR;
printf("%2.2x ", *data_p);
}
data_p++;
}
printf("\r\n");
#else
*data_p++ = SPDR;
}
#endif
#endif
SPI_SS::Set();
#if SPI_HAS_TRANSACTION
SPI.endTransaction();
#endif
XMEM_RELEASE_SPI();
return ( data_p);
}
/* GPIO read. See gpioWr for explanation */
/* GPIN pins are in high nibbles of IOPINS1, IOPINS2 */
template< typename SPI_SS, typename INTR >
uint8_t MAX3421e< SPI_SS, INTR >::gpioRd() {
uint8_t gpin = 0;
gpin = regRd(rIOPINS2); //pins 4-7
gpin &= 0xf0; //clean lower nibble
gpin |= (regRd(rIOPINS1) >> 4); //shift low bits and OR with upper from previous operation.
return ( gpin);
}
/* reset MAX3421E. Returns number of cycles it took for PLL to stabilize after reset
or zero if PLL haven't stabilized in 65535 cycles */
template< typename SPI_SS, typename INTR >
uint16_t MAX3421e< SPI_SS, INTR >::reset() {
uint16_t i = 0;
regWr(rUSBCTL, bmCHIPRES);
regWr(rUSBCTL, 0x00);
while(++i) {
if((regRd(rUSBIRQ) & bmOSCOKIRQ)) {
break;
}
}
return ( i);
}
/* initialize MAX3421E. Set Host mode, pullups, and stuff. Returns 0 if success, -1 if not */
template< typename SPI_SS, typename INTR >
int8_t MAX3421e< SPI_SS, INTR >::Init() {
XMEM_ACQUIRE_SPI();
// Moved here.
// you really should not init hardware in the constructor when it involves locks.
// Also avoids the vbus flicker issue confusing some devices.
/* pin and peripheral setup */
SPI_SS::SetDirWrite();
SPI_SS::Set();
spi::init();
INTR::SetDirRead();
XMEM_RELEASE_SPI();
/* MAX3421E - full-duplex SPI, level interrupt */
// GPX pin on. Moved here, otherwise we flicker the vbus.
regWr(rPINCTL, (bmFDUPSPI | bmINTLEVEL));
if(reset() == 0) { //OSCOKIRQ hasn't asserted in time
return ( -1);
}
regWr(rMODE, bmDPPULLDN | bmDMPULLDN | bmHOST); // set pull-downs, Host
regWr(rHIEN, bmCONDETIE | bmFRAMEIE); //connection detection
/* check if device is connected */
regWr(rHCTL, bmSAMPLEBUS); // sample USB bus
while(!(regRd(rHCTL) & bmSAMPLEBUS)); //wait for sample operation to finish
busprobe(); //check if anything is connected
regWr(rHIRQ, bmCONDETIRQ); //clear connection detect interrupt
regWr(rCPUCTL, 0x01); //enable interrupt pin
return ( 0);
}
/* initialize MAX3421E. Set Host mode, pullups, and stuff. Returns 0 if success, -1 if not */
template< typename SPI_SS, typename INTR >
int8_t MAX3421e< SPI_SS, INTR >::Init(int mseconds) {
XMEM_ACQUIRE_SPI();
// Moved here.
// you really should not init hardware in the constructor when it involves locks.
// Also avoids the vbus flicker issue confusing some devices.
/* pin and peripheral setup */
SPI_SS::SetDirWrite();
SPI_SS::Set();
spi::init();
INTR::SetDirRead();
XMEM_RELEASE_SPI();
/* MAX3421E - full-duplex SPI, level interrupt, vbus off */
regWr(rPINCTL, (bmFDUPSPI | bmINTLEVEL | GPX_VBDET));
if(reset() == 0) { //OSCOKIRQ hasn't asserted in time
return ( -1);
}
// Delay a minimum of 1 second to ensure any capacitors are drained.
// 1 second is required to make sure we do not smoke a Microdrive!
if(mseconds < 1000) mseconds = 1000;
delay(mseconds);
regWr(rMODE, bmDPPULLDN | bmDMPULLDN | bmHOST); // set pull-downs, Host
regWr(rHIEN, bmCONDETIE | bmFRAMEIE); //connection detection
/* check if device is connected */
regWr(rHCTL, bmSAMPLEBUS); // sample USB bus
while(!(regRd(rHCTL) & bmSAMPLEBUS)); //wait for sample operation to finish
busprobe(); //check if anything is connected
regWr(rHIRQ, bmCONDETIRQ); //clear connection detect interrupt
regWr(rCPUCTL, 0x01); //enable interrupt pin
// GPX pin on. This is done here so that busprobe will fail if we have a switch connected.
regWr(rPINCTL, (bmFDUPSPI | bmINTLEVEL));
return ( 0);
}
/* probe bus to determine device presence and speed and switch host to this speed */
template< typename SPI_SS, typename INTR >
void MAX3421e< SPI_SS, INTR >::busprobe() {
uint8_t bus_sample;
bus_sample = regRd(rHRSL); //Get J,K status
bus_sample &= (bmJSTATUS | bmKSTATUS); //zero the rest of the byte
switch(bus_sample) { //start full-speed or low-speed host
case( bmJSTATUS):
if((regRd(rMODE) & bmLOWSPEED) == 0) {
regWr(rMODE, MODE_FS_HOST); //start full-speed host
vbusState = FSHOST;
} else {
regWr(rMODE, MODE_LS_HOST); //start low-speed host
vbusState = LSHOST;
}
break;
case( bmKSTATUS):
if((regRd(rMODE) & bmLOWSPEED) == 0) {
regWr(rMODE, MODE_LS_HOST); //start low-speed host
vbusState = LSHOST;
} else {
regWr(rMODE, MODE_FS_HOST); //start full-speed host
vbusState = FSHOST;
}
break;
case( bmSE1): //illegal state
vbusState = SE1;
break;
case( bmSE0): //disconnected state
regWr(rMODE, bmDPPULLDN | bmDMPULLDN | bmHOST | bmSEPIRQ);
vbusState = SE0;
break;
}//end switch( bus_sample )
}
/* MAX3421 state change task and interrupt handler */
template< typename SPI_SS, typename INTR >
uint8_t MAX3421e< SPI_SS, INTR >::Task(void) {
uint8_t rcode = 0;
uint8_t pinvalue;
//USB_HOST_SERIAL.print("Vbus state: ");
//USB_HOST_SERIAL.println( vbusState, HEX );
pinvalue = INTR::IsSet(); //Read();
//pinvalue = digitalRead( MAX_INT );
if(pinvalue == 0) {
rcode = IntHandler();
}
// pinvalue = digitalRead( MAX_GPX );
// if( pinvalue == LOW ) {
// GpxHandler();
// }
// usbSM(); //USB state machine
return ( rcode);
}
template< typename SPI_SS, typename INTR >
uint8_t MAX3421e< SPI_SS, INTR >::IntHandler() {
uint8_t HIRQ;
uint8_t HIRQ_sendback = 0x00;
HIRQ = regRd(rHIRQ); //determine interrupt source
//if( HIRQ & bmFRAMEIRQ ) { //->1ms SOF interrupt handler
// HIRQ_sendback |= bmFRAMEIRQ;
//}//end FRAMEIRQ handling
if(HIRQ & bmCONDETIRQ) {
busprobe();
HIRQ_sendback |= bmCONDETIRQ;
}
/* End HIRQ interrupts handling, clear serviced IRQs */
regWr(rHIRQ, HIRQ_sendback);
return ( HIRQ_sendback);
}
//template< typename SPI_SS, typename INTR >
//uint8_t MAX3421e< SPI_SS, INTR >::GpxHandler()
//{
// uint8_t GPINIRQ = regRd( rGPINIRQ ); //read GPIN IRQ register
//// if( GPINIRQ & bmGPINIRQ7 ) { //vbus overload
//// vbusPwr( OFF ); //attempt powercycle
//// delay( 1000 );
//// vbusPwr( ON );
//// regWr( rGPINIRQ, bmGPINIRQ7 );
//// }
// return( GPINIRQ );
//}
#endif // _USBHOST_H_