1
0
Fork 0
forked from forks/qmk_firmware
qmk_firmware/drivers/arm/analog.c

208 lines
7.8 KiB
C
Raw Normal View History

/* Copyright 2019 Drew Mills
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "analog.h"
#include "quantum.h"
/* User configurable ADC options */
#ifndef ADC_CIRCULAR_BUFFER
# define ADC_CIRCULAR_BUFFER FALSE
#endif
#ifndef ADC_NUM_CHANNELS
# define ADC_NUM_CHANNELS 1
#elif ADC_NUM_CHANNELS != 1
# error "The ARM ADC implementation currently only supports reading one channel at a time."
#endif
#ifndef ADC_BUFFER_DEPTH
# define ADC_BUFFER_DEPTH 2
#endif
// For more sampling rate options, look at hal_adc_lld.h in ChibiOS
#ifndef ADC_SAMPLING_RATE
# define ADC_SAMPLING_RATE ADC_SMPR_SMP_1P5
#endif
// Options are 12, 10, 8, and 6 bit.
#ifndef ADC_RESOLUTION
# define ADC_RESOLUTION ADC_CFGR1_RES_12BIT
#endif
static ADCConfig adcCfg = {};
static adcsample_t sampleBuffer[ADC_NUM_CHANNELS * ADC_BUFFER_DEPTH];
// Initialize to max number of ADCs, set to empty object to initialize all to false.
#if defined(STM32F0XX)
static bool adcInitialized[1] = {};
#elif defined(STM32F3XX)
static bool adcInitialized[4] = {};
#else
# error "adcInitialized has not been implemented for this ARM microcontroller."
#endif
static ADCConversionGroup adcConversionGroup = {
ADC_CIRCULAR_BUFFER,
(uint16_t)(ADC_NUM_CHANNELS),
NULL, // No end callback
NULL, // No error callback
#if defined(STM32F0XX)
ADC_CFGR1_CONT | ADC_RESOLUTION,
ADC_TR(0, 0).ADC_SAMPLING_RATE,
NULL, // Doesn't specify a default channel
#elif defined(STM32F3XX)
ADC_CFGR_CONT | ADC_RESOLUTION,
ADC_TR(0, 4095),
{
ADC_SAMPLING_RATE,
ADC_SAMPLING_RATE,
},
{
0, // Doesn't specify a default channel
0,
0,
0,
},
#endif
};
static inline ADCDriver* intToADCDriver(uint8_t adcInt) {
ADCDriver* target;
switch (adcInt) {
// clang-format off
#if STM32_ADC_USE_ADC1
case 0: target = &ADCD1; break;
#endif
#if STM32_ADC_USE_ADC2
case 1: target = &ADCD2; break;
#endif
#if STM32_ADC_USE_ADC3
case 2: target = &ADCD3; break;
#endif
#if STM32_ADC_USE_ADC4
case 3: target = &ADCD4; break;
#endif
default: target = NULL; break;
// clang-format on
}
return target;
}
static inline void manageAdcInitializationDriver(uint8_t adc, ADCDriver* adcDriver) {
if (!adcInitialized[adc]) {
adcStart(adcDriver, &adcCfg);
adcInitialized[adc] = true;
}
}
static inline void manageAdcInitialization(uint8_t adc) { manageAdcInitializationDriver(adc, intToADCDriver(adc)); }
pin_and_adc pinToMux(pin_t pin) {
switch (pin) {
// clang-format off
#if defined(STM32F0XX)
case A0: return (pin_and_adc){ ADC_CHANNEL_IN0, 0 };
case A1: return (pin_and_adc){ ADC_CHANNEL_IN1, 0 };
case A2: return (pin_and_adc){ ADC_CHANNEL_IN2, 0 };
case A3: return (pin_and_adc){ ADC_CHANNEL_IN3, 0 };
case A4: return (pin_and_adc){ ADC_CHANNEL_IN4, 0 };
case A5: return (pin_and_adc){ ADC_CHANNEL_IN5, 0 };
case A6: return (pin_and_adc){ ADC_CHANNEL_IN6, 0 };
case A7: return (pin_and_adc){ ADC_CHANNEL_IN7, 0 };
case B0: return (pin_and_adc){ ADC_CHANNEL_IN8, 0 };
case B1: return (pin_and_adc){ ADC_CHANNEL_IN9, 0 };
case C0: return (pin_and_adc){ ADC_CHANNEL_IN10, 0 };
case C1: return (pin_and_adc){ ADC_CHANNEL_IN11, 0 };
case C2: return (pin_and_adc){ ADC_CHANNEL_IN12, 0 };
case C3: return (pin_and_adc){ ADC_CHANNEL_IN13, 0 };
case C4: return (pin_and_adc){ ADC_CHANNEL_IN14, 0 };
case C5: return (pin_and_adc){ ADC_CHANNEL_IN15, 0 };
#elif defined(STM32F3XX)
case A0: return (pin_and_adc){ ADC_CHANNEL_IN1, 0 };
case A1: return (pin_and_adc){ ADC_CHANNEL_IN2, 0 };
case A2: return (pin_and_adc){ ADC_CHANNEL_IN3, 0 };
case A3: return (pin_and_adc){ ADC_CHANNEL_IN4, 0 };
case A4: return (pin_and_adc){ ADC_CHANNEL_IN1, 1 };
case A5: return (pin_and_adc){ ADC_CHANNEL_IN2, 1 };
case A6: return (pin_and_adc){ ADC_CHANNEL_IN3, 1 };
case A7: return (pin_and_adc){ ADC_CHANNEL_IN4, 1 };
case B0: return (pin_and_adc){ ADC_CHANNEL_IN12, 2 };
case B1: return (pin_and_adc){ ADC_CHANNEL_IN1, 2 };
case B2: return (pin_and_adc){ ADC_CHANNEL_IN12, 1 };
case B12: return (pin_and_adc){ ADC_CHANNEL_IN2, 3 };
case B13: return (pin_and_adc){ ADC_CHANNEL_IN3, 3 };
case B14: return (pin_and_adc){ ADC_CHANNEL_IN4, 3 };
case B15: return (pin_and_adc){ ADC_CHANNEL_IN5, 3 };
case C0: return (pin_and_adc){ ADC_CHANNEL_IN6, 0 }; // Can also be ADC2
case C1: return (pin_and_adc){ ADC_CHANNEL_IN7, 0 }; // Can also be ADC2
case C2: return (pin_and_adc){ ADC_CHANNEL_IN8, 0 }; // Can also be ADC2
case C3: return (pin_and_adc){ ADC_CHANNEL_IN9, 0 }; // Can also be ADC2
case C4: return (pin_and_adc){ ADC_CHANNEL_IN5, 1 };
case C5: return (pin_and_adc){ ADC_CHANNEL_IN11, 1 };
case D8: return (pin_and_adc){ ADC_CHANNEL_IN12, 3 };
case D9: return (pin_and_adc){ ADC_CHANNEL_IN13, 3 };
case D10: return (pin_and_adc){ ADC_CHANNEL_IN7, 2 }; // Can also be ADC4
case D11: return (pin_and_adc){ ADC_CHANNEL_IN8, 2 }; // Can also be ADC4
case D12: return (pin_and_adc){ ADC_CHANNEL_IN9, 2 }; // Can also be ADC4
case D13: return (pin_and_adc){ ADC_CHANNEL_IN10, 2 }; // Can also be ADC4
case D14: return (pin_and_adc){ ADC_CHANNEL_IN11, 2 }; // Can also be ADC4
case E7: return (pin_and_adc){ ADC_CHANNEL_IN13, 2 };
case E8: return (pin_and_adc){ ADC_CHANNEL_IN6, 2 }; // Can also be ADC4
case E9: return (pin_and_adc){ ADC_CHANNEL_IN2, 2 };
case E10: return (pin_and_adc){ ADC_CHANNEL_IN14, 2 };
case E11: return (pin_and_adc){ ADC_CHANNEL_IN15, 2 };
case E12: return (pin_and_adc){ ADC_CHANNEL_IN16, 2 };
case E13: return (pin_and_adc){ ADC_CHANNEL_IN3, 2 };
case E14: return (pin_and_adc){ ADC_CHANNEL_IN1, 3 };
case E15: return (pin_and_adc){ ADC_CHANNEL_IN2, 3 };
case F2: return (pin_and_adc){ ADC_CHANNEL_IN10, 0 }; // Can also be ADC2
case F4: return (pin_and_adc){ ADC_CHANNEL_IN5, 0 };
#else
#error "An ADC pin-to-mux configuration has not been specified for this microcontroller."
#endif
default: return (pin_and_adc){ 0, 0 };
// clang-format on
}
}
adcsample_t analogReadPin(pin_t pin) { return adc_read(pinToMux(pin)); }
adcsample_t analogReadPinAdc(pin_t pin, uint8_t adc) {
pin_and_adc target = pinToMux(pin);
target.adc = adc;
return adc_read(target);
}
adcsample_t adc_read(pin_and_adc mux) {
#if defined(STM32F0XX)
adcConversionGroup.sqr = ADC_CHSELR_CHSEL1;
#elif defined(STM32F3XX)
adcConversionGroup.sqr[0] = ADC_SQR1_SQ1_N(mux.pin);
#else
# error "adc_read has not been updated to support this ARM microcontroller."
#endif
ADCDriver* targetDriver = intToADCDriver(mux.adc);
manageAdcInitializationDriver(mux.adc, targetDriver);
adcConvert(targetDriver, &adcConversionGroup, &sampleBuffer[0], ADC_BUFFER_DEPTH);
adcsample_t* result = sampleBuffer;
return *result;
}