1
0
Fork 0
forked from forks/qmk_firmware

Revert "core: make the full 4096 bytes of EEPROM work on Teensy 3.6 (#12947)" (#15695)

This reverts commit 7f8faa429e.

related to https://github.com/qmk/qmk_firmware/issues/15521
This commit is contained in:
Michael Stapelberg 2022-01-09 22:17:15 +01:00 committed by GitHub
parent 1ed5c48d93
commit 7c186ebb97
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -39,126 +39,7 @@
* SOFTWARE.
*/
#define SMC_PMSTAT_RUN ((uint8_t)0x01)
#define SMC_PMSTAT_HSRUN ((uint8_t)0x80)
#define F_CPU KINETIS_SYSCLK_FREQUENCY
static inline int kinetis_hsrun_disable(void) {
#if defined(MK66F18)
if (SMC->PMSTAT == SMC_PMSTAT_HSRUN) {
// First, reduce the CPU clock speed, but do not change
// the peripheral speed (F_BUS). Serial1 & Serial2 baud
// rates will be impacted, but most other peripherals
// will continue functioning at the same speed.
# if F_CPU == 256000000 && F_BUS == 64000000
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 3, 1, 7); // TODO: TEST
# elif F_CPU == 256000000 && F_BUS == 128000000
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7); // TODO: TEST
# elif F_CPU == 240000000 && F_BUS == 60000000
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 3, 1, 7); // ok
# elif F_CPU == 240000000 && F_BUS == 80000000
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 8); // ok
# elif F_CPU == 240000000 && F_BUS == 120000000
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7); // ok
# elif F_CPU == 216000000 && F_BUS == 54000000
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 3, 1, 7); // ok
# elif F_CPU == 216000000 && F_BUS == 72000000
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 8); // ok
# elif F_CPU == 216000000 && F_BUS == 108000000
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7); // ok
# elif F_CPU == 192000000 && F_BUS == 48000000
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 3, 1, 7); // ok
# elif F_CPU == 192000000 && F_BUS == 64000000
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 8); // ok
# elif F_CPU == 192000000 && F_BUS == 96000000
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7); // ok
# elif F_CPU == 180000000 && F_BUS == 60000000
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 8); // ok
# elif F_CPU == 180000000 && F_BUS == 90000000
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7); // ok
# elif F_CPU == 168000000 && F_BUS == 56000000
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 5); // ok
# elif F_CPU == 144000000 && F_BUS == 48000000
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 5); // ok
# elif F_CPU == 144000000 && F_BUS == 72000000
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 5); // ok
# elif F_CPU == 120000000 && F_BUS == 60000000
SIM->CLKDIV1 = SIM_CLKDIV1_OUTDIV1(KINETIS_CLKDIV1_OUTDIV1 - 1) | SIM_CLKDIV1_OUTDIV2(KINETIS_CLKDIV1_OUTDIV2 - 1) |
# if defined(MK66F18)
SIM_CLKDIV1_OUTDIV3(KINETIS_CLKDIV1_OUTDIV3 - 1) |
# endif
SIM_CLKDIV1_OUTDIV4(KINETIS_CLKDIV1_OUTDIV4 - 1);
# else
return 0;
# endif
// Then turn off HSRUN mode
SMC->PMCTRL = SMC_PMCTRL_RUNM_SET(0);
while (SMC->PMSTAT == SMC_PMSTAT_HSRUN)
; // wait
return 1;
}
#endif
return 0;
}
static inline int kinetis_hsrun_enable(void) {
#if defined(MK66F18)
if (SMC->PMSTAT == SMC_PMSTAT_RUN) {
// Turn HSRUN mode on
SMC->PMCTRL = SMC_PMCTRL_RUNM_SET(3);
while (SMC->PMSTAT != SMC_PMSTAT_HSRUN) {
;
} // wait
// Then configure clock for full speed
# if F_CPU == 256000000 && F_BUS == 64000000
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 3, 0, 7);
# elif F_CPU == 256000000 && F_BUS == 128000000
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 7);
# elif F_CPU == 240000000 && F_BUS == 60000000
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 3, 0, 7);
# elif F_CPU == 240000000 && F_BUS == 80000000
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 7);
# elif F_CPU == 240000000 && F_BUS == 120000000
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 7);
# elif F_CPU == 216000000 && F_BUS == 54000000
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 3, 0, 7);
# elif F_CPU == 216000000 && F_BUS == 72000000
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 7);
# elif F_CPU == 216000000 && F_BUS == 108000000
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 7);
# elif F_CPU == 192000000 && F_BUS == 48000000
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 3, 0, 6);
# elif F_CPU == 192000000 && F_BUS == 64000000
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 6);
# elif F_CPU == 192000000 && F_BUS == 96000000
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 6);
# elif F_CPU == 180000000 && F_BUS == 60000000
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 6);
# elif F_CPU == 180000000 && F_BUS == 90000000
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 6);
# elif F_CPU == 168000000 && F_BUS == 56000000
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 5);
# elif F_CPU == 144000000 && F_BUS == 48000000
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 4);
# elif F_CPU == 144000000 && F_BUS == 72000000
SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 4);
# elif F_CPU == 120000000 && F_BUS == 60000000
SIM->CLKDIV1 = SIM_CLKDIV1_OUTDIV1(KINETIS_CLKDIV1_OUTDIV1 - 1) | SIM_CLKDIV1_OUTDIV2(KINETIS_CLKDIV1_OUTDIV2 - 1) |
# if defined(MK66F18)
SIM_CLKDIV1_OUTDIV3(KINETIS_CLKDIV1_OUTDIV3 - 1) |
# endif
SIM_CLKDIV1_OUTDIV4(KINETIS_CLKDIV1_OUTDIV4 - 1);
# else
return 0;
# endif
return 1;
}
#endif
return 0;
}
#if defined(K20x) || defined(MK66F18) /* chip selection */
#if defined(K20x) /* chip selection */
/* Teensy 3.0, 3.1, 3.2; mchck; infinity keyboard */
// The EEPROM is really RAM with a hardware-based backup system to
@ -188,34 +69,22 @@ static inline int kinetis_hsrun_enable(void) {
//
# define HANDLE_UNALIGNED_WRITES
# if defined(K20x)
# define EEPROM_MAX 2048
# define EEPARTITION 0x03 // all 32K dataflash for EEPROM, none for Data
# define EEESPLIT 0x30 // must be 0x30 on these chips
# elif defined(MK66F18)
# define EEPROM_MAX 4096
# define EEPARTITION 0x05 // 128K dataflash for EEPROM, 128K for Data
# define EEESPLIT 0x10 // best endurance: 0x00 = first 12%, 0x10 = first 25%, 0x30 = all equal
# endif
// Minimum EEPROM Endurance
// ------------------------
# if (EEPROM_SIZE == 4096)
# define EEESIZE 0x02
# elif (EEPROM_SIZE == 2048) // 35000 writes/byte or 70000 writes/word
# define EEESIZE 0x03
# if (EEPROM_SIZE == 2048) // 35000 writes/byte or 70000 writes/word
# define EEESIZE 0x33
# elif (EEPROM_SIZE == 1024) // 75000 writes/byte or 150000 writes/word
# define EEESIZE 0x04
# define EEESIZE 0x34
# elif (EEPROM_SIZE == 512) // 155000 writes/byte or 310000 writes/word
# define EEESIZE 0x05
# define EEESIZE 0x35
# elif (EEPROM_SIZE == 256) // 315000 writes/byte or 630000 writes/word
# define EEESIZE 0x06
# define EEESIZE 0x36
# elif (EEPROM_SIZE == 128) // 635000 writes/byte or 1270000 writes/word
# define EEESIZE 0x07
# define EEESIZE 0x37
# elif (EEPROM_SIZE == 64) // 1275000 writes/byte or 2550000 writes/word
# define EEESIZE 0x08
# define EEESIZE 0x38
# elif (EEPROM_SIZE == 32) // 2555000 writes/byte or 5110000 writes/word
# define EEESIZE 0x09
# define EEESIZE 0x39
# endif
/** \brief eeprom initialization
@ -228,21 +97,15 @@ void eeprom_initialize(void) {
uint8_t status;
if (FTFL->FCNFG & FTFL_FCNFG_RAMRDY) {
uint8_t stat = FTFL->FSTAT & 0x70;
if (stat) FTFL->FSTAT = stat;
// FlexRAM is configured as traditional RAM
// We need to reconfigure for EEPROM usage
kinetis_hsrun_disable();
FTFL->FCCOB0 = 0x80; // PGMPART = Program Partition Command
FTFL->FCCOB3 = 0;
FTFL->FCCOB4 = EEESPLIT | EEESIZE;
FTFL->FCCOB5 = EEPARTITION;
FTFL->FCCOB0 = 0x80; // PGMPART = Program Partition Command
FTFL->FCCOB4 = EEESIZE; // EEPROM Size
FTFL->FCCOB5 = 0x03; // 0K for Dataflash, 32K for EEPROM backup
__disable_irq();
// do_flash_cmd() must execute from RAM. Luckily the C syntax is simple...
(*((void (*)(volatile uint8_t *))((uint32_t)do_flash_cmd | 1)))(&(FTFL->FSTAT));
__enable_irq();
kinetis_hsrun_enable();
status = FTFL->FSTAT;
if (status & (FTFL_FSTAT_RDCOLERR | FTFL_FSTAT_ACCERR | FTFL_FSTAT_FPVIOL)) {
FTFL->FSTAT = (status & (FTFL_FSTAT_RDCOLERR | FTFL_FSTAT_ACCERR | FTFL_FSTAT_FPVIOL));
@ -251,11 +114,11 @@ void eeprom_initialize(void) {
}
// wait for eeprom to become ready (is this really necessary?)
while (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) {
if (++count > 200000) break;
if (++count > 20000) break;
}
}
# define FlexRAM ((volatile uint8_t *)0x14000000)
# define FlexRAM ((uint8_t *)0x14000000)
/** \brief eeprom read byte
*
@ -332,12 +195,8 @@ void eeprom_write_byte(uint8_t *addr, uint8_t value) {
if (offset >= EEPROM_SIZE) return;
if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
if (FlexRAM[offset] != value) {
kinetis_hsrun_disable();
uint8_t stat = FTFL->FSTAT & 0x70;
if (stat) FTFL->FSTAT = stat;
FlexRAM[offset] = value;
flexram_wait();
kinetis_hsrun_enable();
}
}
@ -354,30 +213,18 @@ void eeprom_write_word(uint16_t *addr, uint16_t value) {
if ((offset & 1) == 0) {
# endif
if (*(uint16_t *)(&FlexRAM[offset]) != value) {
kinetis_hsrun_disable();
uint8_t stat = FTFL->FSTAT & 0x70;
if (stat) FTFL->FSTAT = stat;
*(uint16_t *)(&FlexRAM[offset]) = value;
flexram_wait();
kinetis_hsrun_enable();
}
# ifdef HANDLE_UNALIGNED_WRITES
} else {
if (FlexRAM[offset] != value) {
kinetis_hsrun_disable();
uint8_t stat = FTFL->FSTAT & 0x70;
if (stat) FTFL->FSTAT = stat;
FlexRAM[offset] = value;
flexram_wait();
kinetis_hsrun_enable();
}
if (FlexRAM[offset + 1] != (value >> 8)) {
kinetis_hsrun_disable();
uint8_t stat = FTFL->FSTAT & 0x70;
if (stat) FTFL->FSTAT = stat;
FlexRAM[offset + 1] = value >> 8;
flexram_wait();
kinetis_hsrun_enable();
}
}
# endif
@ -397,57 +244,33 @@ void eeprom_write_dword(uint32_t *addr, uint32_t value) {
case 0:
# endif
if (*(uint32_t *)(&FlexRAM[offset]) != value) {
kinetis_hsrun_disable();
uint8_t stat = FTFL->FSTAT & 0x70;
if (stat) FTFL->FSTAT = stat;
*(uint32_t *)(&FlexRAM[offset]) = value;
flexram_wait();
kinetis_hsrun_enable();
}
return;
# ifdef HANDLE_UNALIGNED_WRITES
case 2:
if (*(uint16_t *)(&FlexRAM[offset]) != value) {
kinetis_hsrun_disable();
uint8_t stat = FTFL->FSTAT & 0x70;
if (stat) FTFL->FSTAT = stat;
*(uint16_t *)(&FlexRAM[offset]) = value;
flexram_wait();
kinetis_hsrun_enable();
}
if (*(uint16_t *)(&FlexRAM[offset + 2]) != (value >> 16)) {
kinetis_hsrun_disable();
uint8_t stat = FTFL->FSTAT & 0x70;
if (stat) FTFL->FSTAT = stat;
*(uint16_t *)(&FlexRAM[offset + 2]) = value >> 16;
flexram_wait();
kinetis_hsrun_enable();
}
return;
default:
if (FlexRAM[offset] != value) {
kinetis_hsrun_disable();
uint8_t stat = FTFL->FSTAT & 0x70;
if (stat) FTFL->FSTAT = stat;
FlexRAM[offset] = value;
flexram_wait();
kinetis_hsrun_enable();
}
if (*(uint16_t *)(&FlexRAM[offset + 1]) != (value >> 8)) {
kinetis_hsrun_disable();
uint8_t stat = FTFL->FSTAT & 0x70;
if (stat) FTFL->FSTAT = stat;
*(uint16_t *)(&FlexRAM[offset + 1]) = value >> 8;
flexram_wait();
kinetis_hsrun_enable();
}
if (FlexRAM[offset + 3] != (value >> 24)) {
kinetis_hsrun_disable();
uint8_t stat = FTFL->FSTAT & 0x70;
if (stat) FTFL->FSTAT = stat;
FlexRAM[offset + 3] = value >> 24;
flexram_wait();
kinetis_hsrun_enable();
}
}
# endif
@ -465,7 +288,6 @@ void eeprom_write_block(const void *buf, void *addr, uint32_t len) {
if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
if (len >= EEPROM_SIZE) len = EEPROM_SIZE;
if (offset + len >= EEPROM_SIZE) len = EEPROM_SIZE - offset;
kinetis_hsrun_disable();
while (len > 0) {
uint32_t lsb = offset & 3;
if (lsb == 0 && len >= 4) {
@ -476,8 +298,6 @@ void eeprom_write_block(const void *buf, void *addr, uint32_t len) {
val32 |= (*src++ << 16);
val32 |= (*src++ << 24);
if (*(uint32_t *)(&FlexRAM[offset]) != val32) {
uint8_t stat = FTFL->FSTAT & 0x70;
if (stat) FTFL->FSTAT = stat;
*(uint32_t *)(&FlexRAM[offset]) = val32;
flexram_wait();
}
@ -489,8 +309,6 @@ void eeprom_write_block(const void *buf, void *addr, uint32_t len) {
val16 = *src++;
val16 |= (*src++ << 8);
if (*(uint16_t *)(&FlexRAM[offset]) != val16) {
uint8_t stat = FTFL->FSTAT & 0x70;
if (stat) FTFL->FSTAT = stat;
*(uint16_t *)(&FlexRAM[offset]) = val16;
flexram_wait();
}
@ -500,8 +318,6 @@ void eeprom_write_block(const void *buf, void *addr, uint32_t len) {
// write 8 bits
uint8_t val8 = *src++;
if (FlexRAM[offset] != val8) {
uint8_t stat = FTFL->FSTAT & 0x70;
if (stat) FTFL->FSTAT = stat;
FlexRAM[offset] = val8;
flexram_wait();
}
@ -509,7 +325,6 @@ void eeprom_write_block(const void *buf, void *addr, uint32_t len) {
len--;
}
}
kinetis_hsrun_enable();
}
/*