1
0
Fork 0
forked from forks/qmk_firmware

eeprom_stm32: implement high density wear leveling (#12567)

* eeprom_stm32: implement wear leveling
Update EECONFIG_MAGIC_NUMBER
eeprom_stm32: check emulated eeprom size is large enough
* eeprom_stm32: Increasing simulated EEPROM density on stm32
* Adding utility script to decode emulated eeprom
* Adding unit tests
* Applying qmk cformat changes
* cleaned up flash mocking
* Fix for stm32eeprom_parser.py checking via signature with wrong base
* Fix for nk65 keyboard

Co-authored-by: Ilya Zhuravlev <whatever@xyz.is>
Co-authored-by: zvecr <git@zvecr.com>
This commit is contained in:
Donald Kjer 2021-08-23 15:15:34 -07:00 committed by GitHub
parent 2481e109a0
commit e756a21636
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
12 changed files with 1549 additions and 197 deletions

View file

@ -56,6 +56,7 @@ include $(TMK_PATH)/common.mk
include $(QUANTUM_PATH)/debounce/tests/rules.mk
include $(QUANTUM_PATH)/sequencer/tests/rules.mk
include $(QUANTUM_PATH)/serial_link/tests/rules.mk
include $(TMK_PATH)/common/test/rules.mk
ifneq ($(filter $(FULL_TESTS),$(TEST)),)
include build_full_test.mk
endif

View file

@ -148,6 +148,9 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
* both 128kb and 256kb versions of F303.
* Register 0x1FFFF7CC holds the size of the flash memory.
*/
#ifndef FLASHSIZE_BASE
# define FLASHSIZE_BASE ((uint32_t)0x1FFFF7CCU) /*!< FLASH Size register base address */
#endif
#define EEPROM_START_ADDRESS
#define FEE_MCU_FLASH_SIZE \
({ \

View file

@ -21,7 +21,7 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
#include <stdbool.h>
#ifndef EECONFIG_MAGIC_NUMBER
# define EECONFIG_MAGIC_NUMBER (uint16_t)0xFEEA // When changing, decrement this value to avoid future re-init issues
# define EECONFIG_MAGIC_NUMBER (uint16_t)0xFEE9 // When changing, decrement this value to avoid future re-init issues
#endif
#define EECONFIG_MAGIC_NUMBER_OFF (uint16_t)0xFFFF

View file

@ -4,6 +4,7 @@ FULL_TESTS := $(TEST_LIST)
include $(ROOT_DIR)/quantum/debounce/tests/testlist.mk
include $(ROOT_DIR)/quantum/sequencer/tests/testlist.mk
include $(ROOT_DIR)/quantum/serial_link/tests/testlist.mk
include $(ROOT_DIR)/tmk_core/common/test/testlist.mk
define VALIDATE_TEST_LIST
ifneq ($1,)

View file

@ -14,185 +14,751 @@
* Artur F.
*
* Modifications for QMK and STM32F303 by Yiancar
* Modifications to add flash wear leveling by Ilya Zhuravlev
* Modifications to increase flash density by Don Kjer
*/
#include <stdio.h>
#include <string.h>
#include <stdbool.h>
#include "debug.h"
#include "eeprom_stm32.h"
/*****************************************************************************
* Allows to use the internal flash to store non volatile data. To initialize
* the functionality use the EEPROM_Init() function. Be sure that by reprogramming
* of the controller just affected pages will be deleted. In other case the non
* volatile data will be lost.
******************************************************************************/
#include "flash_stm32.h"
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Functions -----------------------------------------------------------------*/
/*
* We emulate eeprom by writing a snapshot compacted view of eeprom contents,
* followed by a write log of any change since that snapshot:
*
* === SIMULATED EEPROM CONTENTS ===
*
* Compacted Write Log
* ............[BYTE][BYTE]
* FFFF....FFFF[WRD0][WRD1]
* FFFFFFFFFFFF[WORD][NEXT]
* ....FFFFFFFF[BYTE][WRD0]
*
* PAGE_BASE
* PAGE_LASTWRITE_BASE
* WRITE_LAST
*
* Compacted contents are the 1's complement of the actual EEPROM contents.
* e.g. An 'FFFF' represents a '0000' value.
*
* The size of the 'compacted' area is equal to the size of the 'emulated' eeprom.
* The size of the compacted-area and write log are configurable, and the combined
* size of Compacted + WriteLog is a multiple FEE_PAGE_SIZE, which is MCU dependent.
* Simulated Eeprom contents are located at the end of available flash space.
*
* The following configuration defines can be set:
*
* FEE_DENSITY_PAGES # Total number of pages to use for eeprom simulation (Compact + Write log)
* FEE_DENSITY_BYTES # Size of simulated eeprom. (Defaults to half the space allocated by FEE_DENSITY_PAGES)
* NOTE: The current implementation does not include page swapping,
* and FEE_DENSITY_BYTES will consume that amount of RAM as a cached view of actual EEPROM contents.
*
* The maximum size of FEE_DENSITY_BYTES is currently 16384. The write log size equals
* FEE_DENSITY_PAGES * FEE_PAGE_SIZE - FEE_DENSITY_BYTES.
* The larger the write log, the less frequently the compacted area needs to be rewritten.
*
*
* *** General Algorithm ***
*
* During initialization:
* The contents of the Compacted-flash area are loaded and the 1's complement value
* is cached into memory (e.g. 0xFFFF in Flash represents 0x0000 in cache).
* Write log entries are processed until a 0xFFFF is reached.
* Each log entry updates a byte or word in the cache.
*
* During reads:
* EEPROM contents are given back directly from the cache in memory.
*
* During writes:
* The contents of the cache is updated first.
* If the Compacted-flash area corresponding to the write address is unprogrammed, the 1's complement of the value is written directly into Compacted-flash
* Otherwise:
* If the write log is full, erase both the Compacted-flash area and the Write log, then write cached contents to the Compacted-flash area.
* Otherwise a Write log entry is constructed and appended to the next free position in the Write log.
*
*
* *** Write Log Structure ***
*
* Write log entries allow for optimized byte writes to addresses below 128. Writing 0 or 1 words are also optimized when word-aligned.
*
* === WRITE LOG ENTRY FORMATS ===
*
* Byte-Entry
* 0XXXXXXXYYYYYYYY
*
* Address Value
*
* 0 <= Address < 0x80 (128)
*
* Word-Encoded 0
* 100XXXXXXXXXXXXX
*
* Address >> 1
* Value: 0
*
* 0 <= Address <= 0x3FFE (16382)
*
* Word-Encoded 1
* 101XXXXXXXXXXXXX
*
* Address >> 1
* Value: 1
*
* 0 <= Address <= 0x3FFE (16382)
*
* Reserved
* 110XXXXXXXXXXXXX
*
*
* Word-Next
* 111XXXXXXXXXXXXXYYYYYYYYYYYYYYYY
*
* (Address-128)>>1 ~Value
*
* ( 0 <= Address < 0x0080 (128): Reserved)
* 0x80 <= Address <= 0x3FFE (16382)
*
* Write Log entry ranges:
* 0x0000 ... 0x7FFF - Byte-Entry; address is (Entry & 0x7F00) >> 4; value is (Entry & 0xFF)
* 0x8000 ... 0x9FFF - Word-Encoded 0; address is (Entry & 0x1FFF) << 1; value is 0
* 0xA000 ... 0xBFFF - Word-Encoded 1; address is (Entry & 0x1FFF) << 1; value is 1
* 0xC000 ... 0xDFFF - Reserved
* 0xE000 ... 0xFFBF - Word-Next; address is (Entry & 0x1FFF) << 1 + 0x80; value is ~(Next_Entry)
* 0xFFC0 ... 0xFFFE - Reserved
* 0xFFFF - Unprogrammed
*
*/
/* These bits are used for optimizing encoding of bytes, 0 and 1 */
#define FEE_WORD_ENCODING 0x8000
#define FEE_VALUE_NEXT 0x6000
#define FEE_VALUE_RESERVED 0x4000
#define FEE_VALUE_ENCODED 0x2000
#define FEE_BYTE_RANGE 0x80
// HACK ALERT. This definition may not match your processor
// To Do. Work out correct value for EEPROM_PAGE_SIZE on the STM32F103CT6 etc
#if defined(EEPROM_EMU_STM32F303xC)
# define MCU_STM32F303CC
#elif defined(EEPROM_EMU_STM32F103xB)
# define MCU_STM32F103RB
#elif defined(EEPROM_EMU_STM32F072xB)
# define MCU_STM32F072CB
#elif defined(EEPROM_EMU_STM32F042x6)
# define MCU_STM32F042K6
#elif !defined(FEE_PAGE_SIZE) || !defined(FEE_DENSITY_PAGES) || !defined(FEE_MCU_FLASH_SIZE)
# error "not implemented."
#endif
#if !defined(FEE_PAGE_SIZE) || !defined(FEE_DENSITY_PAGES)
# if defined(MCU_STM32F103RB) || defined(MCU_STM32F042K6)
# ifndef FEE_PAGE_SIZE
# define FEE_PAGE_SIZE 0x400 // Page size = 1KByte
# endif
# ifndef FEE_DENSITY_PAGES
# define FEE_DENSITY_PAGES 2 // How many pages are used
# endif
# elif defined(MCU_STM32F103ZE) || defined(MCU_STM32F103RE) || defined(MCU_STM32F103RD) || defined(MCU_STM32F303CC) || defined(MCU_STM32F072CB)
# ifndef FEE_PAGE_SIZE
# define FEE_PAGE_SIZE 0x800 // Page size = 2KByte
# endif
# ifndef FEE_DENSITY_PAGES
# define FEE_DENSITY_PAGES 4 // How many pages are used
# endif
# else
# error "No MCU type specified. Add something like -DMCU_STM32F103RB to your compiler arguments (probably in a Makefile)."
# endif
#endif
#ifndef FEE_MCU_FLASH_SIZE
# if defined(MCU_STM32F103RB) || defined(MCU_STM32F072CB)
# define FEE_MCU_FLASH_SIZE 128 // Size in Kb
# elif defined(MCU_STM32F042K6)
# define FEE_MCU_FLASH_SIZE 32 // Size in Kb
# elif defined(MCU_STM32F103ZE) || defined(MCU_STM32F103RE)
# define FEE_MCU_FLASH_SIZE 512 // Size in Kb
# elif defined(MCU_STM32F103RD)
# define FEE_MCU_FLASH_SIZE 384 // Size in Kb
# elif defined(MCU_STM32F303CC)
# define FEE_MCU_FLASH_SIZE 256 // Size in Kb
# else
# error "No MCU type specified. Add something like -DMCU_STM32F103RB to your compiler arguments (probably in a Makefile)."
# endif
#endif
#define FEE_XSTR(x) FEE_STR(x)
#define FEE_STR(x) #x
/* Size of combined compacted eeprom and write log pages */
#define FEE_DENSITY_MAX_SIZE (FEE_DENSITY_PAGES * FEE_PAGE_SIZE)
/* Addressable range 16KByte: 0 <-> (0x1FFF << 1) */
#define FEE_ADDRESS_MAX_SIZE 0x4000
#ifndef EEPROM_START_ADDRESS /* *TODO: Get rid of this check */
# if FEE_DENSITY_MAX_SIZE > (FEE_MCU_FLASH_SIZE * 1024)
# pragma message FEE_XSTR(FEE_DENSITY_MAX_SIZE) " > " FEE_XSTR(FEE_MCU_FLASH_SIZE * 1024)
# error emulated eeprom: FEE_DENSITY_PAGES is greater than available flash size
# endif
#endif
/* Size of emulated eeprom */
#ifdef FEE_DENSITY_BYTES
# if (FEE_DENSITY_BYTES > FEE_DENSITY_MAX_SIZE)
# pragma message FEE_XSTR(FEE_DENSITY_BYTES) " > " FEE_XSTR(FEE_DENSITY_MAX_SIZE)
# error emulated eeprom: FEE_DENSITY_BYTES exceeds FEE_DENSITY_MAX_SIZE
# endif
# if (FEE_DENSITY_BYTES == FEE_DENSITY_MAX_SIZE)
# pragma message FEE_XSTR(FEE_DENSITY_BYTES) " == " FEE_XSTR(FEE_DENSITY_MAX_SIZE)
# warning emulated eeprom: FEE_DENSITY_BYTES leaves no room for a write log. This will greatly increase the flash wear rate!
# endif
# if FEE_DENSITY_BYTES > FEE_ADDRESS_MAX_SIZE
# pragma message FEE_XSTR(FEE_DENSITY_BYTES) " > " FEE_XSTR(FEE_ADDRESS_MAX_SIZE)
# error emulated eeprom: FEE_DENSITY_BYTES is greater than FEE_ADDRESS_MAX_SIZE allows
# endif
# if ((FEE_DENSITY_BYTES) % 2) == 1
# error emulated eeprom: FEE_DENSITY_BYTES must be even
# endif
#else
/* Default to half of allocated space used for emulated eeprom, half for write log */
# define FEE_DENSITY_BYTES (FEE_DENSITY_PAGES * FEE_PAGE_SIZE / 2)
#endif
/* Size of write log */
#define FEE_WRITE_LOG_BYTES (FEE_DENSITY_PAGES * FEE_PAGE_SIZE - FEE_DENSITY_BYTES)
/* Start of the emulated eeprom compacted flash area */
#ifndef FEE_FLASH_BASE
# define FEE_FLASH_BASE 0x8000000
#endif
#define FEE_PAGE_BASE_ADDRESS ((uintptr_t)(FEE_FLASH_BASE) + FEE_MCU_FLASH_SIZE * 1024 - FEE_WRITE_LOG_BYTES - FEE_DENSITY_BYTES)
/* End of the emulated eeprom compacted flash area */
#define FEE_PAGE_LAST_ADDRESS (FEE_PAGE_BASE_ADDRESS + FEE_DENSITY_BYTES)
/* Start of the emulated eeprom write log */
#define FEE_WRITE_LOG_BASE_ADDRESS FEE_PAGE_LAST_ADDRESS
/* End of the emulated eeprom write log */
#define FEE_WRITE_LOG_LAST_ADDRESS (FEE_WRITE_LOG_BASE_ADDRESS + FEE_WRITE_LOG_BYTES)
/* Flash word value after erase */
#define FEE_EMPTY_WORD ((uint16_t)0xFFFF)
#if defined(DYNAMIC_KEYMAP_EEPROM_MAX_ADDR) && (DYNAMIC_KEYMAP_EEPROM_MAX_ADDR >= FEE_DENSITY_BYTES)
# error emulated eeprom: DYNAMIC_KEYMAP_EEPROM_MAX_ADDR is greater than the FEE_DENSITY_BYTES available
#endif
/* In-memory contents of emulated eeprom for faster access */
/* *TODO: Implement page swapping */
static uint16_t WordBuf[FEE_DENSITY_BYTES / 2];
static uint8_t *DataBuf = (uint8_t *)WordBuf;
/* Pointer to the first available slot within the write log */
static uint16_t *empty_slot;
// #define DEBUG_EEPROM_OUTPUT
/*
* Debug print utils
*/
#if defined(DEBUG_EEPROM_OUTPUT)
# define debug_eeprom debug_enable
# define eeprom_println(s) println(s)
# define eeprom_printf(fmt, ...) xprintf(fmt, ##__VA_ARGS__);
#else /* NO_DEBUG */
# define debug_eeprom false
# define eeprom_println(s)
# define eeprom_printf(fmt, ...)
#endif /* NO_DEBUG */
void print_eeprom(void) {
#ifndef NO_DEBUG
int empty_rows = 0;
for (uint16_t i = 0; i < FEE_DENSITY_BYTES; i++) {
if (i % 16 == 0) {
if (i >= FEE_DENSITY_BYTES - 16) {
/* Make sure we display the last row */
empty_rows = 0;
}
/* Check if this row is uninitialized */
++empty_rows;
for (uint16_t j = 0; j < 16; j++) {
if (DataBuf[i + j]) {
empty_rows = 0;
break;
}
}
if (empty_rows > 1) {
/* Repeat empty row */
if (empty_rows == 2) {
/* Only display the first repeat empty row */
println("*");
}
i += 15;
continue;
}
xprintf("%04x", i);
}
if (i % 8 == 0) print(" ");
xprintf(" %02x", DataBuf[i]);
if ((i + 1) % 16 == 0) {
println("");
}
}
#endif
}
uint8_t DataBuf[FEE_PAGE_SIZE];
/*****************************************************************************
* Delete Flash Space used for user Data, deletes the whole space between
* RW_PAGE_BASE_ADDRESS and the last uC Flash Page
******************************************************************************/
uint16_t EEPROM_Init(void) {
// unlock flash
FLASH_Unlock();
// Clear Flags
// FLASH_ClearFlag(FLASH_SR_EOP|FLASH_SR_PGERR|FLASH_SR_WRPERR);
return FEE_DENSITY_BYTES;
}
/*****************************************************************************
* Erase the whole reserved Flash Space used for user Data
******************************************************************************/
void EEPROM_Erase(void) {
int page_num = 0;
// delete all pages from specified start page to the last page
do {
FLASH_ErasePage(FEE_PAGE_BASE_ADDRESS + (page_num * FEE_PAGE_SIZE));
page_num++;
} while (page_num < FEE_DENSITY_PAGES);
}
/*****************************************************************************
* Writes once data byte to flash on specified address. If a byte is already
* written, the whole page must be copied to a buffer, the byte changed and
* the manipulated buffer written after PageErase.
*******************************************************************************/
uint16_t EEPROM_WriteDataByte(uint16_t Address, uint8_t DataByte) {
FLASH_Status FlashStatus = FLASH_COMPLETE;
uint32_t page;
int i;
// exit if desired address is above the limit (e.G. under 2048 Bytes for 4 pages)
if (Address > FEE_DENSITY_BYTES) {
return 0;
/* Load emulated eeprom contents from compacted flash into memory */
uint16_t *src = (uint16_t *)FEE_PAGE_BASE_ADDRESS;
uint16_t *dest = (uint16_t *)DataBuf;
for (; src < (uint16_t *)FEE_PAGE_LAST_ADDRESS; ++src, ++dest) {
*dest = ~*src;
}
// calculate which page is affected (Pagenum1/Pagenum2...PagenumN)
page = FEE_ADDR_OFFSET(Address) / FEE_PAGE_SIZE;
if (debug_eeprom) {
println("EEPROM_Init Compacted Pages:");
print_eeprom();
println("EEPROM_Init Write Log:");
}
// if current data is 0xFF, the byte is empty, just overwrite with the new one
if ((*(__IO uint16_t *)(FEE_PAGE_BASE_ADDRESS + FEE_ADDR_OFFSET(Address))) == FEE_EMPTY_WORD) {
FlashStatus = FLASH_ProgramHalfWord(FEE_PAGE_BASE_ADDRESS + FEE_ADDR_OFFSET(Address), (uint16_t)(0x00FF & DataByte));
} else {
// Copy Page to a buffer
memcpy(DataBuf, (uint8_t *)FEE_PAGE_BASE_ADDRESS + (page * FEE_PAGE_SIZE), FEE_PAGE_SIZE); // !!! Calculate base address for the desired page
// check if new data is differ to current data, return if not, proceed if yes
if (DataByte == *(__IO uint8_t *)(FEE_PAGE_BASE_ADDRESS + FEE_ADDR_OFFSET(Address))) {
return 0;
/* Replay write log */
uint16_t *log_addr;
for (log_addr = (uint16_t *)FEE_WRITE_LOG_BASE_ADDRESS; log_addr < (uint16_t *)FEE_WRITE_LOG_LAST_ADDRESS; ++log_addr) {
uint16_t address = *log_addr;
if (address == FEE_EMPTY_WORD) {
break;
}
// manipulate desired data byte in temp data array if new byte is differ to the current
DataBuf[FEE_ADDR_OFFSET(Address) % FEE_PAGE_SIZE] = DataByte;
// Erase Page
FlashStatus = FLASH_ErasePage(FEE_PAGE_BASE_ADDRESS + (page * FEE_PAGE_SIZE));
// Write new data (whole page) to flash if data has been changed
for (i = 0; i < (FEE_PAGE_SIZE / 2); i++) {
if ((__IO uint16_t)(0xFF00 | DataBuf[FEE_ADDR_OFFSET(i)]) != 0xFFFF) {
FlashStatus = FLASH_ProgramHalfWord((FEE_PAGE_BASE_ADDRESS + (page * FEE_PAGE_SIZE)) + (i * 2), (uint16_t)(0xFF00 | DataBuf[FEE_ADDR_OFFSET(i)]));
/* Check for lowest 128-bytes optimization */
if (!(address & FEE_WORD_ENCODING)) {
uint8_t bvalue = (uint8_t)address;
address >>= 8;
DataBuf[address] = bvalue;
eeprom_printf("DataBuf[0x%02x] = 0x%02x;\n", address, bvalue);
} else {
uint16_t wvalue;
/* Check if value is in next word */
if ((address & FEE_VALUE_NEXT) == FEE_VALUE_NEXT) {
/* Read value from next word */
if (++log_addr >= (uint16_t *)FEE_WRITE_LOG_LAST_ADDRESS) {
break;
}
wvalue = ~*log_addr;
if (!wvalue) {
eeprom_printf("Incomplete write at log_addr: 0x%04x;\n", (uint32_t)log_addr);
/* Possibly incomplete write. Ignore and continue */
continue;
}
address &= 0x1FFF;
address <<= 1;
/* Writes to addresses less than 128 are byte log entries */
address += FEE_BYTE_RANGE;
} else {
/* Reserved for future use */
if (address & FEE_VALUE_RESERVED) {
eeprom_printf("Reserved encoded value at log_addr: 0x%04x;\n", (uint32_t)log_addr);
continue;
}
/* Optimization for 0 or 1 values. */
wvalue = (address & FEE_VALUE_ENCODED) >> 13;
address &= 0x1FFF;
address <<= 1;
}
if (address < FEE_DENSITY_BYTES) {
eeprom_printf("DataBuf[0x%04x] = 0x%04x;\n", address, wvalue);
*(uint16_t *)(&DataBuf[address]) = wvalue;
} else {
eeprom_printf("DataBuf[0x%04x] cannot be set to 0x%04x [BAD ADDRESS]\n", address, wvalue);
}
}
}
return FlashStatus;
empty_slot = log_addr;
if (debug_eeprom) {
println("EEPROM_Init Final DataBuf:");
print_eeprom();
}
return FEE_DENSITY_BYTES;
}
/*****************************************************************************
* Read once data byte from a specified address.
*******************************************************************************/
/* Clear flash contents (doesn't touch in-memory DataBuf) */
static void eeprom_clear(void) {
FLASH_Unlock();
for (uint16_t page_num = 0; page_num < FEE_DENSITY_PAGES; ++page_num) {
eeprom_printf("FLASH_ErasePage(0x%04x)\n", (uint32_t)(FEE_PAGE_BASE_ADDRESS + (page_num * FEE_PAGE_SIZE)));
FLASH_ErasePage(FEE_PAGE_BASE_ADDRESS + (page_num * FEE_PAGE_SIZE));
}
FLASH_Lock();
empty_slot = (uint16_t *)FEE_WRITE_LOG_BASE_ADDRESS;
eeprom_printf("eeprom_clear empty_slot: 0x%08x\n", (uint32_t)empty_slot);
}
/* Erase emulated eeprom */
void EEPROM_Erase(void) {
eeprom_println("EEPROM_Erase");
/* Erase compacted pages and write log */
eeprom_clear();
/* re-initialize to reset DataBuf */
EEPROM_Init();
}
/* Compact write log */
static uint8_t eeprom_compact(void) {
/* Erase compacted pages and write log */
eeprom_clear();
FLASH_Unlock();
FLASH_Status final_status = FLASH_COMPLETE;
/* Write emulated eeprom contents from memory to compacted flash */
uint16_t *src = (uint16_t *)DataBuf;
uintptr_t dest = FEE_PAGE_BASE_ADDRESS;
uint16_t value;
for (; dest < FEE_PAGE_LAST_ADDRESS; ++src, dest += 2) {
value = *src;
if (value) {
eeprom_printf("FLASH_ProgramHalfWord(0x%04x, 0x%04x)\n", (uint32_t)dest, ~value);
FLASH_Status status = FLASH_ProgramHalfWord(dest, ~value);
if (status != FLASH_COMPLETE) final_status = status;
}
}
FLASH_Lock();
if (debug_eeprom) {
println("eeprom_compacted:");
print_eeprom();
}
return final_status;
}
static uint8_t eeprom_write_direct_entry(uint16_t Address) {
/* Check if we can just write this directly to the compacted flash area */
uintptr_t directAddress = FEE_PAGE_BASE_ADDRESS + (Address & 0xFFFE);
if (*(uint16_t *)directAddress == FEE_EMPTY_WORD) {
/* Write the value directly to the compacted area without a log entry */
uint16_t value = ~*(uint16_t *)(&DataBuf[Address & 0xFFFE]);
/* Early exit if a write isn't needed */
if (value == FEE_EMPTY_WORD) return FLASH_COMPLETE;
FLASH_Unlock();
eeprom_printf("FLASH_ProgramHalfWord(0x%08x, 0x%04x) [DIRECT]\n", (uint32_t)directAddress, value);
FLASH_Status status = FLASH_ProgramHalfWord(directAddress, value);
FLASH_Lock();
return status;
}
return 0;
}
static uint8_t eeprom_write_log_word_entry(uint16_t Address) {
FLASH_Status final_status = FLASH_COMPLETE;
uint16_t value = *(uint16_t *)(&DataBuf[Address]);
eeprom_printf("eeprom_write_log_word_entry(0x%04x): 0x%04x\n", Address, value);
/* MSB signifies the lowest 128-byte optimization is not in effect */
uint16_t encoding = FEE_WORD_ENCODING;
uint8_t entry_size;
if (value <= 1) {
encoding |= value << 13;
entry_size = 2;
} else {
encoding |= FEE_VALUE_NEXT;
entry_size = 4;
/* Writes to addresses less than 128 are byte log entries */
Address -= FEE_BYTE_RANGE;
}
/* if we can't find an empty spot, we must compact emulated eeprom */
if (empty_slot > (uint16_t *)(FEE_WRITE_LOG_LAST_ADDRESS - entry_size)) {
/* compact the write log into the compacted flash area */
return eeprom_compact();
}
/* Word log writes should be word-aligned. Take back a bit */
Address >>= 1;
Address |= encoding;
/* ok we found a place let's write our data */
FLASH_Unlock();
/* address */
eeprom_printf("FLASH_ProgramHalfWord(0x%08x, 0x%04x)\n", (uint32_t)empty_slot, Address);
final_status = FLASH_ProgramHalfWord((uintptr_t)empty_slot++, Address);
/* value */
if (encoding == (FEE_WORD_ENCODING | FEE_VALUE_NEXT)) {
eeprom_printf("FLASH_ProgramHalfWord(0x%08x, 0x%04x)\n", (uint32_t)empty_slot, ~value);
FLASH_Status status = FLASH_ProgramHalfWord((uintptr_t)empty_slot++, ~value);
if (status != FLASH_COMPLETE) final_status = status;
}
FLASH_Lock();
return final_status;
}
static uint8_t eeprom_write_log_byte_entry(uint16_t Address) {
eeprom_printf("eeprom_write_log_byte_entry(0x%04x): 0x%02x\n", Address, DataBuf[Address]);
/* if couldn't find an empty spot, we must compact emulated eeprom */
if (empty_slot >= (uint16_t *)FEE_WRITE_LOG_LAST_ADDRESS) {
/* compact the write log into the compacted flash area */
return eeprom_compact();
}
/* ok we found a place let's write our data */
FLASH_Unlock();
/* Pack address and value into the same word */
uint16_t value = (Address << 8) | DataBuf[Address];
/* write to flash */
eeprom_printf("FLASH_ProgramHalfWord(0x%08x, 0x%04x)\n", (uint32_t)empty_slot, value);
FLASH_Status status = FLASH_ProgramHalfWord((uintptr_t)empty_slot++, value);
FLASH_Lock();
return status;
}
uint8_t EEPROM_WriteDataByte(uint16_t Address, uint8_t DataByte) {
/* if the address is out-of-bounds, do nothing */
if (Address >= FEE_DENSITY_BYTES) {
eeprom_printf("EEPROM_WriteDataByte(0x%04x, 0x%02x) [BAD ADDRESS]\n", Address, DataByte);
return FLASH_BAD_ADDRESS;
}
/* if the value is the same, don't bother writing it */
if (DataBuf[Address] == DataByte) {
eeprom_printf("EEPROM_WriteDataByte(0x%04x, 0x%02x) [SKIP SAME]\n", Address, DataByte);
return 0;
}
/* keep DataBuf cache in sync */
DataBuf[Address] = DataByte;
eeprom_printf("EEPROM_WriteDataByte DataBuf[0x%04x] = 0x%02x\n", Address, DataBuf[Address]);
/* perform the write into flash memory */
/* First, attempt to write directly into the compacted flash area */
FLASH_Status status = eeprom_write_direct_entry(Address);
if (!status) {
/* Otherwise append to the write log */
if (Address < FEE_BYTE_RANGE) {
status = eeprom_write_log_byte_entry(Address);
} else {
status = eeprom_write_log_word_entry(Address & 0xFFFE);
}
}
if (status != 0 && status != FLASH_COMPLETE) {
eeprom_printf("EEPROM_WriteDataByte [STATUS == %d]\n", status);
}
return status;
}
uint8_t EEPROM_WriteDataWord(uint16_t Address, uint16_t DataWord) {
/* if the address is out-of-bounds, do nothing */
if (Address >= FEE_DENSITY_BYTES) {
eeprom_printf("EEPROM_WriteDataWord(0x%04x, 0x%04x) [BAD ADDRESS]\n", Address, DataWord);
return FLASH_BAD_ADDRESS;
}
/* Check for word alignment */
FLASH_Status final_status = FLASH_COMPLETE;
if (Address % 2) {
final_status = EEPROM_WriteDataByte(Address, DataWord);
FLASH_Status status = EEPROM_WriteDataByte(Address + 1, DataWord >> 8);
if (status != FLASH_COMPLETE) final_status = status;
if (final_status != 0 && final_status != FLASH_COMPLETE) {
eeprom_printf("EEPROM_WriteDataWord [STATUS == %d]\n", final_status);
}
return final_status;
}
/* if the value is the same, don't bother writing it */
uint16_t oldValue = *(uint16_t *)(&DataBuf[Address]);
if (oldValue == DataWord) {
eeprom_printf("EEPROM_WriteDataWord(0x%04x, 0x%04x) [SKIP SAME]\n", Address, DataWord);
return 0;
}
/* keep DataBuf cache in sync */
*(uint16_t *)(&DataBuf[Address]) = DataWord;
eeprom_printf("EEPROM_WriteDataWord DataBuf[0x%04x] = 0x%04x\n", Address, *(uint16_t *)(&DataBuf[Address]));
/* perform the write into flash memory */
/* First, attempt to write directly into the compacted flash area */
final_status = eeprom_write_direct_entry(Address);
if (!final_status) {
/* Otherwise append to the write log */
/* Check if we need to fall back to byte write */
if (Address < FEE_BYTE_RANGE) {
final_status = FLASH_COMPLETE;
/* Only write a byte if it has changed */
if ((uint8_t)oldValue != (uint8_t)DataWord) {
final_status = eeprom_write_log_byte_entry(Address);
}
FLASH_Status status = FLASH_COMPLETE;
/* Only write a byte if it has changed */
if ((oldValue >> 8) != (DataWord >> 8)) {
status = eeprom_write_log_byte_entry(Address + 1);
}
if (status != FLASH_COMPLETE) final_status = status;
} else {
final_status = eeprom_write_log_word_entry(Address);
}
}
if (final_status != 0 && final_status != FLASH_COMPLETE) {
eeprom_printf("EEPROM_WriteDataWord [STATUS == %d]\n", final_status);
}
return final_status;
}
uint8_t EEPROM_ReadDataByte(uint16_t Address) {
uint8_t DataByte = 0xFF;
// Get Byte from specified address
DataByte = (*(__IO uint8_t *)(FEE_PAGE_BASE_ADDRESS + FEE_ADDR_OFFSET(Address)));
if (Address < FEE_DENSITY_BYTES) {
DataByte = DataBuf[Address];
}
eeprom_printf("EEPROM_ReadDataByte(0x%04x): 0x%02x\n", Address, DataByte);
return DataByte;
}
uint16_t EEPROM_ReadDataWord(uint16_t Address) {
uint16_t DataWord = 0xFFFF;
if (Address < FEE_DENSITY_BYTES - 1) {
/* Check word alignment */
if (Address % 2) {
DataWord = DataBuf[Address] | (DataBuf[Address + 1] << 8);
} else {
DataWord = *(uint16_t *)(&DataBuf[Address]);
}
}
eeprom_printf("EEPROM_ReadDataWord(0x%04x): 0x%04x\n", Address, DataWord);
return DataWord;
}
/*****************************************************************************
* Wrap library in AVR style functions.
*******************************************************************************/
uint8_t eeprom_read_byte(const uint8_t *Address) {
const uint16_t p = (const uint32_t)Address;
return EEPROM_ReadDataByte(p);
}
uint8_t eeprom_read_byte(const uint8_t *Address) { return EEPROM_ReadDataByte((const uintptr_t)Address); }
void eeprom_write_byte(uint8_t *Address, uint8_t Value) {
uint16_t p = (uint32_t)Address;
EEPROM_WriteDataByte(p, Value);
}
void eeprom_write_byte(uint8_t *Address, uint8_t Value) { EEPROM_WriteDataByte((uintptr_t)Address, Value); }
void eeprom_update_byte(uint8_t *Address, uint8_t Value) {
uint16_t p = (uint32_t)Address;
EEPROM_WriteDataByte(p, Value);
}
void eeprom_update_byte(uint8_t *Address, uint8_t Value) { EEPROM_WriteDataByte((uintptr_t)Address, Value); }
uint16_t eeprom_read_word(const uint16_t *Address) {
const uint16_t p = (const uint32_t)Address;
return EEPROM_ReadDataByte(p) | (EEPROM_ReadDataByte(p + 1) << 8);
}
uint16_t eeprom_read_word(const uint16_t *Address) { return EEPROM_ReadDataWord((const uintptr_t)Address); }
void eeprom_write_word(uint16_t *Address, uint16_t Value) {
uint16_t p = (uint32_t)Address;
EEPROM_WriteDataByte(p, (uint8_t)Value);
EEPROM_WriteDataByte(p + 1, (uint8_t)(Value >> 8));
}
void eeprom_write_word(uint16_t *Address, uint16_t Value) { EEPROM_WriteDataWord((uintptr_t)Address, Value); }
void eeprom_update_word(uint16_t *Address, uint16_t Value) {
uint16_t p = (uint32_t)Address;
EEPROM_WriteDataByte(p, (uint8_t)Value);
EEPROM_WriteDataByte(p + 1, (uint8_t)(Value >> 8));
}
void eeprom_update_word(uint16_t *Address, uint16_t Value) { EEPROM_WriteDataWord((uintptr_t)Address, Value); }
uint32_t eeprom_read_dword(const uint32_t *Address) {
const uint16_t p = (const uint32_t)Address;
return EEPROM_ReadDataByte(p) | (EEPROM_ReadDataByte(p + 1) << 8) | (EEPROM_ReadDataByte(p + 2) << 16) | (EEPROM_ReadDataByte(p + 3) << 24);
}
void eeprom_write_dword(uint32_t *Address, uint32_t Value) {
uint16_t p = (const uint32_t)Address;
EEPROM_WriteDataByte(p, (uint8_t)Value);
EEPROM_WriteDataByte(p + 1, (uint8_t)(Value >> 8));
EEPROM_WriteDataByte(p + 2, (uint8_t)(Value >> 16));
EEPROM_WriteDataByte(p + 3, (uint8_t)(Value >> 24));
}
void eeprom_update_dword(uint32_t *Address, uint32_t Value) {
uint16_t p = (const uint32_t)Address;
uint32_t existingValue = EEPROM_ReadDataByte(p) | (EEPROM_ReadDataByte(p + 1) << 8) | (EEPROM_ReadDataByte(p + 2) << 16) | (EEPROM_ReadDataByte(p + 3) << 24);
if (Value != existingValue) {
EEPROM_WriteDataByte(p, (uint8_t)Value);
EEPROM_WriteDataByte(p + 1, (uint8_t)(Value >> 8));
EEPROM_WriteDataByte(p + 2, (uint8_t)(Value >> 16));
EEPROM_WriteDataByte(p + 3, (uint8_t)(Value >> 24));
const uint16_t p = (const uintptr_t)Address;
/* Check word alignment */
if (p % 2) {
/* Not aligned */
return (uint32_t)EEPROM_ReadDataByte(p) | (uint32_t)(EEPROM_ReadDataWord(p + 1) << 8) | (uint32_t)(EEPROM_ReadDataByte(p + 3) << 24);
} else {
/* Aligned */
return EEPROM_ReadDataWord(p) | (EEPROM_ReadDataWord(p + 2) << 16);
}
}
void eeprom_write_dword(uint32_t *Address, uint32_t Value) {
uint16_t p = (const uintptr_t)Address;
/* Check word alignment */
if (p % 2) {
/* Not aligned */
EEPROM_WriteDataByte(p, (uint8_t)Value);
EEPROM_WriteDataWord(p + 1, (uint16_t)(Value >> 8));
EEPROM_WriteDataByte(p + 3, (uint8_t)(Value >> 24));
} else {
/* Aligned */
EEPROM_WriteDataWord(p, (uint16_t)Value);
EEPROM_WriteDataWord(p + 2, (uint16_t)(Value >> 16));
}
}
void eeprom_update_dword(uint32_t *Address, uint32_t Value) { eeprom_write_dword(Address, Value); }
void eeprom_read_block(void *buf, const void *addr, size_t len) {
const uint8_t *p = (const uint8_t *)addr;
const uint8_t *src = (const uint8_t *)addr;
uint8_t * dest = (uint8_t *)buf;
while (len--) {
*dest++ = eeprom_read_byte(p++);
/* Check word alignment */
if (len && (uintptr_t)src % 2) {
/* Read the unaligned first byte */
*dest++ = eeprom_read_byte(src++);
--len;
}
uint16_t value;
bool aligned = ((uintptr_t)dest % 2 == 0);
while (len > 1) {
value = eeprom_read_word((uint16_t *)src);
if (aligned) {
*(uint16_t *)dest = value;
dest += 2;
} else {
*dest++ = value;
*dest++ = value >> 8;
}
src += 2;
len -= 2;
}
if (len) {
*dest = eeprom_read_byte(src);
}
}
void eeprom_write_block(const void *buf, void *addr, size_t len) {
uint8_t * p = (uint8_t *)addr;
const uint8_t *src = (const uint8_t *)buf;
while (len--) {
eeprom_write_byte(p++, *src++);
uint8_t * dest = (uint8_t *)addr;
const uint8_t *src = (const uint8_t *)buf;
/* Check word alignment */
if (len && (uintptr_t)dest % 2) {
/* Write the unaligned first byte */
eeprom_write_byte(dest++, *src++);
--len;
}
uint16_t value;
bool aligned = ((uintptr_t)src % 2 == 0);
while (len > 1) {
if (aligned) {
value = *(uint16_t *)src;
} else {
value = *(uint8_t *)src | (*(uint8_t *)(src + 1) << 8);
}
eeprom_write_word((uint16_t *)dest, value);
dest += 2;
src += 2;
len -= 2;
}
if (len) {
eeprom_write_byte(dest, *src);
}
}
void eeprom_update_block(const void *buf, void *addr, size_t len) {
uint8_t * p = (uint8_t *)addr;
const uint8_t *src = (const uint8_t *)buf;
while (len--) {
eeprom_write_byte(p++, *src++);
}
}
void eeprom_update_block(const void *buf, void *addr, size_t len) { eeprom_write_block(buf, addr, len); }

View file

@ -23,62 +23,11 @@
#pragma once
#include <ch.h>
#include <hal.h>
#include "flash_stm32.h"
// HACK ALERT. This definition may not match your processor
// To Do. Work out correct value for EEPROM_PAGE_SIZE on the STM32F103CT6 etc
#if defined(EEPROM_EMU_STM32F303xC)
# define MCU_STM32F303CC
#elif defined(EEPROM_EMU_STM32F103xB)
# define MCU_STM32F103RB
#elif defined(EEPROM_EMU_STM32F072xB)
# define MCU_STM32F072CB
#elif defined(EEPROM_EMU_STM32F042x6)
# define MCU_STM32F042K6
#else
# error "not implemented."
#endif
#ifndef EEPROM_PAGE_SIZE
# if defined(MCU_STM32F103RB) || defined(MCU_STM32F042K6)
# define FEE_PAGE_SIZE (uint16_t)0x400 // Page size = 1KByte
# define FEE_DENSITY_PAGES 2 // How many pages are used
# elif defined(MCU_STM32F103ZE) || defined(MCU_STM32F103RE) || defined(MCU_STM32F103RD) || defined(MCU_STM32F303CC) || defined(MCU_STM32F072CB)
# define FEE_PAGE_SIZE (uint16_t)0x800 // Page size = 2KByte
# define FEE_DENSITY_PAGES 4 // How many pages are used
# else
# error "No MCU type specified. Add something like -DMCU_STM32F103RB to your compiler arguments (probably in a Makefile)."
# endif
#endif
#ifndef EEPROM_START_ADDRESS
# if defined(MCU_STM32F103RB) || defined(MCU_STM32F072CB)
# define FEE_MCU_FLASH_SIZE 128 // Size in Kb
# elif defined(MCU_STM32F042K6)
# define FEE_MCU_FLASH_SIZE 32 // Size in Kb
# elif defined(MCU_STM32F103ZE) || defined(MCU_STM32F103RE)
# define FEE_MCU_FLASH_SIZE 512 // Size in Kb
# elif defined(MCU_STM32F103RD)
# define FEE_MCU_FLASH_SIZE 384 // Size in Kb
# elif defined(MCU_STM32F303CC)
# define FEE_MCU_FLASH_SIZE 256 // Size in Kb
# else
# error "No MCU type specified. Add something like -DMCU_STM32F103RB to your compiler arguments (probably in a Makefile)."
# endif
#endif
// DONT CHANGE
// Choose location for the first EEPROM Page address on the top of flash
#define FEE_PAGE_BASE_ADDRESS ((uint32_t)(0x8000000 + FEE_MCU_FLASH_SIZE * 1024 - FEE_DENSITY_PAGES * FEE_PAGE_SIZE))
#define FEE_DENSITY_BYTES ((FEE_PAGE_SIZE / 2) * FEE_DENSITY_PAGES - 1)
#define FEE_LAST_PAGE_ADDRESS (FEE_PAGE_BASE_ADDRESS + (FEE_PAGE_SIZE * FEE_DENSITY_PAGES))
#define FEE_EMPTY_WORD ((uint16_t)0xFFFF)
#define FEE_ADDR_OFFSET(Address) (Address * 2) // 1Byte per Word will be saved to preserve Flash
// Use this function to initialize the functionality
uint16_t EEPROM_Init(void);
void EEPROM_Erase(void);
uint16_t EEPROM_WriteDataByte(uint16_t Address, uint8_t DataByte);
uint8_t EEPROM_WriteDataByte(uint16_t Address, uint8_t DataByte);
uint8_t EEPROM_WriteDataWord(uint16_t Address, uint16_t DataWord);
uint8_t EEPROM_ReadDataByte(uint16_t Address);
uint16_t EEPROM_ReadDataWord(uint16_t Address);
void print_eeprom(void);

View file

@ -22,8 +22,11 @@
extern "C" {
#endif
#include <ch.h>
#include <hal.h>
#include <stdint.h>
#ifdef FLASH_STM32_MOCKED
extern uint8_t FlashBuf[MOCK_FLASH_SIZE];
#endif
typedef enum { FLASH_BUSY = 1, FLASH_ERROR_PG, FLASH_ERROR_WRP, FLASH_ERROR_OPT, FLASH_COMPLETE, FLASH_TIMEOUT, FLASH_BAD_ADDRESS } FLASH_Status;

View file

@ -0,0 +1,438 @@
/* Copyright 2021 by Don Kjer
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "gtest/gtest.h"
extern "C" {
#include "flash_stm32.h"
#include "eeprom_stm32.h"
#include "eeprom.h"
}
/* Mock Flash Parameters:
*
* === Large Layout ===
* flash size: 65536
* page size: 2048
* density pages: 16
* Simulated EEPROM size: 16384
*
* FlashBuf Layout:
* [Unused | Compact | Write Log ]
* [0......|32768......|49152......65535]
*
* === Tiny Layout ===
* flash size: 1024
* page size: 512
* density pages: 1
* Simulated EEPROM size: 256
*
* FlashBuf Layout:
* [Unused | Compact | Write Log ]
* [0......|512......|768......1023]
*
*/
#define EEPROM_SIZE (FEE_PAGE_SIZE * FEE_DENSITY_PAGES / 2)
#define LOG_SIZE EEPROM_SIZE
#define LOG_BASE (MOCK_FLASH_SIZE - LOG_SIZE)
#define EEPROM_BASE (LOG_BASE - EEPROM_SIZE)
/* Log encoding helpers */
#define BYTE_VALUE(addr, value) (((addr) << 8) | (value))
#define WORD_ZERO(addr) (0x8000 | ((addr) >> 1))
#define WORD_ONE(addr) (0xA000 | ((addr) >> 1))
#define WORD_NEXT(addr) (0xE000 | (((addr)-0x80) >> 1))
class EepromStm32Test : public testing::Test {
public:
EepromStm32Test() {}
~EepromStm32Test() {}
protected:
void SetUp() override { EEPROM_Erase(); }
void TearDown() override {
#ifdef EEPROM_DEBUG
dumpEepromDataBuf();
#endif
}
};
TEST_F(EepromStm32Test, TestErase) {
EEPROM_WriteDataByte(0, 0x42);
EEPROM_Erase();
EXPECT_EQ(EEPROM_ReadDataByte(0), 0);
EXPECT_EQ(EEPROM_ReadDataByte(1), 0);
}
TEST_F(EepromStm32Test, TestReadGarbage) {
uint8_t garbage = 0x3c;
for (int i = 0; i < MOCK_FLASH_SIZE; ++i) {
garbage ^= 0xa3;
garbage += i;
FlashBuf[i] = garbage;
}
EEPROM_Init(); // Just verify we don't crash
}
TEST_F(EepromStm32Test, TestWriteBadAddress) {
EXPECT_EQ(EEPROM_WriteDataByte(EEPROM_SIZE, 0x42), FLASH_BAD_ADDRESS);
EXPECT_EQ(EEPROM_WriteDataWord(EEPROM_SIZE - 1, 0xbeef), FLASH_BAD_ADDRESS);
EXPECT_EQ(EEPROM_WriteDataWord(EEPROM_SIZE, 0xbeef), FLASH_BAD_ADDRESS);
}
TEST_F(EepromStm32Test, TestReadBadAddress) {
EXPECT_EQ(EEPROM_ReadDataByte(EEPROM_SIZE), 0xFF);
EXPECT_EQ(EEPROM_ReadDataWord(EEPROM_SIZE - 1), 0xFFFF);
EXPECT_EQ(EEPROM_ReadDataWord(EEPROM_SIZE), 0xFFFF);
EXPECT_EQ(eeprom_read_dword((uint32_t*)(EEPROM_SIZE - 4)), 0);
EXPECT_EQ(eeprom_read_dword((uint32_t*)(EEPROM_SIZE - 3)), 0xFF000000);
EXPECT_EQ(eeprom_read_dword((uint32_t*)EEPROM_SIZE), 0xFFFFFFFF);
}
TEST_F(EepromStm32Test, TestReadByte) {
/* Direct compacted-area baseline: Address < 0x80 */
FlashBuf[EEPROM_BASE + 2] = ~0xef;
FlashBuf[EEPROM_BASE + 3] = ~0xbe;
/* Direct compacted-area baseline: Address >= 0x80 */
FlashBuf[EEPROM_BASE + EEPROM_SIZE - 2] = ~0x78;
FlashBuf[EEPROM_BASE + EEPROM_SIZE - 1] = ~0x56;
/* Check values */
EEPROM_Init();
EXPECT_EQ(EEPROM_ReadDataByte(2), 0xef);
EXPECT_EQ(EEPROM_ReadDataByte(3), 0xbe);
EXPECT_EQ(EEPROM_ReadDataByte(EEPROM_SIZE - 2), 0x78);
EXPECT_EQ(EEPROM_ReadDataByte(EEPROM_SIZE - 1), 0x56);
/* Write Log byte value */
FlashBuf[LOG_BASE] = 0x65;
FlashBuf[LOG_BASE + 1] = 3;
/* Write Log word value */
*(uint16_t*)&FlashBuf[LOG_BASE + 2] = WORD_NEXT(EEPROM_SIZE - 2);
*(uint16_t*)&FlashBuf[LOG_BASE + 4] = ~0x9abc;
/* Check values */
EEPROM_Init();
EXPECT_EQ(EEPROM_ReadDataByte(2), 0xef);
EXPECT_EQ(EEPROM_ReadDataByte(3), 0x65);
EXPECT_EQ(EEPROM_ReadDataByte(EEPROM_SIZE - 2), 0xbc);
EXPECT_EQ(EEPROM_ReadDataByte(EEPROM_SIZE - 1), 0x9a);
}
TEST_F(EepromStm32Test, TestWriteByte) {
/* Direct compacted-area baseline: Address < 0x80 */
EEPROM_WriteDataByte(2, 0xef);
EEPROM_WriteDataByte(3, 0xbe);
/* Direct compacted-area baseline: Address >= 0x80 */
EEPROM_WriteDataByte(EEPROM_SIZE - 2, 0x78);
EEPROM_WriteDataByte(EEPROM_SIZE - 1, 0x56);
/* Check values */
/* First write in each aligned word should have been direct */
EXPECT_EQ(FlashBuf[EEPROM_BASE + 2], (uint8_t)~0xef);
EXPECT_EQ(FlashBuf[EEPROM_BASE + EEPROM_SIZE - 2], (uint8_t)~0x78);
/* Second write per aligned word requires a log entry */
EXPECT_EQ(*(uint16_t*)&FlashBuf[LOG_BASE], BYTE_VALUE(3, 0xbe));
EXPECT_EQ(*(uint16_t*)&FlashBuf[LOG_BASE + 2], WORD_NEXT(EEPROM_SIZE - 1));
EXPECT_EQ(*(uint16_t*)&FlashBuf[LOG_BASE + 4], (uint16_t)~0x5678);
}
TEST_F(EepromStm32Test, TestByteRoundTrip) {
/* Direct compacted-area: Address < 0x80 */
EEPROM_WriteDataWord(0, 0xdead);
EEPROM_WriteDataByte(2, 0xef);
EEPROM_WriteDataByte(3, 0xbe);
/* Direct compacted-area: Address >= 0x80 */
EEPROM_WriteDataByte(EEPROM_SIZE - 2, 0x78);
EEPROM_WriteDataByte(EEPROM_SIZE - 1, 0x56);
/* Check values */
EEPROM_Init();
EXPECT_EQ(EEPROM_ReadDataByte(0), 0xad);
EXPECT_EQ(EEPROM_ReadDataByte(1), 0xde);
EXPECT_EQ(EEPROM_ReadDataByte(2), 0xef);
EXPECT_EQ(EEPROM_ReadDataByte(3), 0xbe);
EXPECT_EQ(EEPROM_ReadDataByte(EEPROM_SIZE - 2), 0x78);
EXPECT_EQ(EEPROM_ReadDataByte(EEPROM_SIZE - 1), 0x56);
/* Write log entries */
EEPROM_WriteDataByte(2, 0x80);
EEPROM_WriteDataByte(EEPROM_SIZE - 2, 0x3c);
/* Check values */
EEPROM_Init();
EXPECT_EQ(EEPROM_ReadDataByte(2), 0x80);
EXPECT_EQ(EEPROM_ReadDataByte(3), 0xbe);
EXPECT_EQ(EEPROM_ReadDataByte(EEPROM_SIZE - 2), 0x3c);
EXPECT_EQ(EEPROM_ReadDataByte(EEPROM_SIZE - 1), 0x56);
}
TEST_F(EepromStm32Test, TestReadWord) {
/* Direct compacted-area baseline: Address < 0x80 */
FlashBuf[EEPROM_BASE + 0] = ~0xad;
FlashBuf[EEPROM_BASE + 1] = ~0xde;
/* Direct compacted-area baseline: Address >= 0x80 */
FlashBuf[EEPROM_BASE + 200] = ~0xcd;
FlashBuf[EEPROM_BASE + 201] = ~0xab;
FlashBuf[EEPROM_BASE + EEPROM_SIZE - 4] = ~0x34;
FlashBuf[EEPROM_BASE + EEPROM_SIZE - 3] = ~0x12;
FlashBuf[EEPROM_BASE + EEPROM_SIZE - 2] = ~0x78;
FlashBuf[EEPROM_BASE + EEPROM_SIZE - 1] = ~0x56;
/* Check values */
EEPROM_Init();
EXPECT_EQ(EEPROM_ReadDataWord(0), 0xdead);
EXPECT_EQ(EEPROM_ReadDataWord(200), 0xabcd);
EXPECT_EQ(EEPROM_ReadDataWord(EEPROM_SIZE - 4), 0x1234);
EXPECT_EQ(EEPROM_ReadDataWord(EEPROM_SIZE - 2), 0x5678);
/* Write Log word zero-encoded */
*(uint16_t*)&FlashBuf[LOG_BASE] = WORD_ZERO(200);
/* Write Log word one-encoded */
*(uint16_t*)&FlashBuf[LOG_BASE + 2] = WORD_ONE(EEPROM_SIZE - 4);
/* Write Log word value */
*(uint16_t*)&FlashBuf[LOG_BASE + 4] = WORD_NEXT(EEPROM_SIZE - 2);
*(uint16_t*)&FlashBuf[LOG_BASE + 6] = ~0x9abc;
/* Check values */
EEPROM_Init();
EXPECT_EQ(EEPROM_ReadDataWord(200), 0);
EXPECT_EQ(EEPROM_ReadDataWord(EEPROM_SIZE - 4), 1);
EXPECT_EQ(EEPROM_ReadDataWord(EEPROM_SIZE - 2), 0x9abc);
}
TEST_F(EepromStm32Test, TestWriteWord) {
/* Direct compacted-area: Address < 0x80 */
EEPROM_WriteDataWord(0, 0xdead); // Aligned
EEPROM_WriteDataWord(3, 0xbeef); // Unaligned
/* Direct compacted-area: Address >= 0x80 */
EEPROM_WriteDataWord(200, 0xabcd); // Aligned
EEPROM_WriteDataWord(203, 0x9876); // Unaligned
EEPROM_WriteDataWord(EEPROM_SIZE - 4, 0x1234);
EEPROM_WriteDataWord(EEPROM_SIZE - 2, 0x5678);
/* Write Log word zero-encoded */
EEPROM_WriteDataWord(EEPROM_SIZE - 4, 0);
/* Write Log word one-encoded */
EEPROM_WriteDataWord(EEPROM_SIZE - 2, 1);
/* Write Log word value aligned */
EEPROM_WriteDataWord(200, 0x4321); // Aligned
/* Write Log word value unaligned */
EEPROM_WriteDataByte(202, 0x3c); // Set neighboring byte
EEPROM_WriteDataWord(203, 0xcdef); // Unaligned
/* Check values */
/* Direct compacted-area */
EXPECT_EQ(*(uint16_t*)&FlashBuf[EEPROM_BASE], (uint16_t)~0xdead);
EXPECT_EQ(*(uint16_t*)&FlashBuf[EEPROM_BASE + 3], (uint16_t)~0xbeef);
EXPECT_EQ(*(uint16_t*)&FlashBuf[EEPROM_BASE + 200], (uint16_t)~0xabcd);
EXPECT_EQ(FlashBuf[EEPROM_BASE + 203], (uint8_t)~0x76);
EXPECT_EQ(FlashBuf[EEPROM_BASE + 204], (uint8_t)~0x98);
EXPECT_EQ(*(uint16_t*)&FlashBuf[EEPROM_BASE + EEPROM_SIZE - 4], (uint16_t)~0x1234);
EXPECT_EQ(*(uint16_t*)&FlashBuf[EEPROM_BASE + EEPROM_SIZE - 2], (uint16_t)~0x5678);
/* Write Log word zero-encoded */
EXPECT_EQ(*(uint16_t*)&FlashBuf[LOG_BASE], WORD_ZERO(EEPROM_SIZE - 4));
/* Write Log word one-encoded */
EXPECT_EQ(*(uint16_t*)&FlashBuf[LOG_BASE + 2], WORD_ONE(EEPROM_SIZE - 2));
/* Write Log word value aligned */
EXPECT_EQ(*(uint16_t*)&FlashBuf[LOG_BASE + 4], WORD_NEXT(200));
EXPECT_EQ(*(uint16_t*)&FlashBuf[LOG_BASE + 6], (uint16_t)~0x4321);
/* Write Log word value unaligned */
EXPECT_EQ(*(uint16_t*)&FlashBuf[LOG_BASE + 8], WORD_NEXT(202));
EXPECT_EQ(*(uint16_t*)&FlashBuf[LOG_BASE + 10], (uint16_t)~0x763c);
EXPECT_EQ(*(uint16_t*)&FlashBuf[LOG_BASE + 12], WORD_NEXT(202));
EXPECT_EQ(*(uint16_t*)&FlashBuf[LOG_BASE + 14], (uint16_t)~0xef3c);
EXPECT_EQ(*(uint16_t*)&FlashBuf[LOG_BASE + 16], WORD_NEXT(204));
EXPECT_EQ(*(uint16_t*)&FlashBuf[LOG_BASE + 18], (uint16_t)~0x00cd);
}
TEST_F(EepromStm32Test, TestWordRoundTrip) {
/* Direct compacted-area: Address < 0x80 */
EEPROM_WriteDataWord(0, 0xdead); // Aligned
EEPROM_WriteDataWord(3, 0xbeef); // Unaligned
/* Direct compacted-area: Address >= 0x80 */
EEPROM_WriteDataWord(200, 0xabcd); // Aligned
EEPROM_WriteDataWord(203, 0x9876); // Unaligned
EEPROM_WriteDataWord(EEPROM_SIZE - 4, 0x1234);
EEPROM_WriteDataWord(EEPROM_SIZE - 2, 0x5678);
/* Check values */
EEPROM_Init();
EXPECT_EQ(EEPROM_ReadDataWord(0), 0xdead);
EXPECT_EQ(EEPROM_ReadDataWord(3), 0xbeef);
EXPECT_EQ(EEPROM_ReadDataWord(200), 0xabcd);
EXPECT_EQ(EEPROM_ReadDataWord(203), 0x9876);
EXPECT_EQ(EEPROM_ReadDataWord(EEPROM_SIZE - 4), 0x1234);
EXPECT_EQ(EEPROM_ReadDataWord(EEPROM_SIZE - 2), 0x5678);
/* Write Log word zero-encoded */
EEPROM_WriteDataWord(EEPROM_SIZE - 4, 0);
/* Write Log word one-encoded */
EEPROM_WriteDataWord(EEPROM_SIZE - 2, 1);
/* Write Log word value aligned */
EEPROM_WriteDataWord(200, 0x4321); // Aligned
/* Write Log word value unaligned */
EEPROM_WriteDataByte(202, 0x3c); // Set neighboring byte
EEPROM_WriteDataWord(203, 0xcdef); // Unaligned
/* Check values */
EEPROM_Init();
EXPECT_EQ(EEPROM_ReadDataWord(200), 0x4321);
EXPECT_EQ(EEPROM_ReadDataByte(202), 0x3c);
EXPECT_EQ(EEPROM_ReadDataWord(203), 0xcdef);
EXPECT_EQ(EEPROM_ReadDataWord(EEPROM_SIZE - 4), 0);
EXPECT_EQ(EEPROM_ReadDataWord(EEPROM_SIZE - 2), 1);
}
TEST_F(EepromStm32Test, TestByteWordBoundary) {
/* Direct compacted-area write */
EEPROM_WriteDataWord(0x7e, 0xdead);
EEPROM_WriteDataWord(0x80, 0xbeef);
/* Byte log entry */
EEPROM_WriteDataByte(0x7f, 0x3c);
/* Word log entry */
EEPROM_WriteDataByte(0x80, 0x18);
/* Check values */
EEPROM_Init();
EXPECT_EQ(EEPROM_ReadDataWord(0x7e), 0x3cad);
EXPECT_EQ(EEPROM_ReadDataWord(0x80), 0xbe18);
EXPECT_EQ(*(uint16_t*)&FlashBuf[LOG_BASE], BYTE_VALUE(0x7f, 0x3c));
EXPECT_EQ(*(uint16_t*)&FlashBuf[LOG_BASE + 2], WORD_NEXT(0x80));
EXPECT_EQ(*(uint16_t*)&FlashBuf[LOG_BASE + 4], (uint16_t)~0xbe18);
/* Byte log entries */
EEPROM_WriteDataWord(0x7e, 0xcafe);
/* Check values */
EEPROM_Init();
EXPECT_EQ(EEPROM_ReadDataWord(0x7e), 0xcafe);
EXPECT_EQ(*(uint16_t*)&FlashBuf[LOG_BASE + 6], BYTE_VALUE(0x7e, 0xfe));
EXPECT_EQ(*(uint16_t*)&FlashBuf[LOG_BASE + 8], BYTE_VALUE(0x7f, 0xca));
/* Byte and Word log entries */
EEPROM_WriteDataWord(0x7f, 0xba5e);
/* Check values */
EEPROM_Init();
EXPECT_EQ(EEPROM_ReadDataWord(0x7f), 0xba5e);
EXPECT_EQ(*(uint16_t*)&FlashBuf[LOG_BASE + 10], BYTE_VALUE(0x7f, 0x5e));
EXPECT_EQ(*(uint16_t*)&FlashBuf[LOG_BASE + 12], WORD_NEXT(0x80));
EXPECT_EQ(*(uint16_t*)&FlashBuf[LOG_BASE + 14], (uint16_t)~0xbeba);
/* Word log entry */
EEPROM_WriteDataWord(0x80, 0xf00d);
/* Check values */
EEPROM_Init();
EXPECT_EQ(EEPROM_ReadDataWord(0x80), 0xf00d);
EXPECT_EQ(*(uint16_t*)&FlashBuf[LOG_BASE + 16], WORD_NEXT(0x80));
EXPECT_EQ(*(uint16_t*)&FlashBuf[LOG_BASE + 18], (uint16_t)~0xf00d);
}
TEST_F(EepromStm32Test, TestDWordRoundTrip) {
/* Direct compacted-area: Address < 0x80 */
eeprom_write_dword((uint32_t*)0, 0xdeadbeef); // Aligned
eeprom_write_dword((uint32_t*)9, 0x12345678); // Unaligned
/* Direct compacted-area: Address >= 0x80 */
eeprom_write_dword((uint32_t*)200, 0xfacef00d);
eeprom_write_dword((uint32_t*)(EEPROM_SIZE - 4), 0xba5eba11); // Aligned
eeprom_write_dword((uint32_t*)(EEPROM_SIZE - 9), 0xcafed00d); // Unaligned
/* Check direct values */
EEPROM_Init();
EXPECT_EQ(eeprom_read_dword((uint32_t*)0), 0xdeadbeef);
EXPECT_EQ(eeprom_read_dword((uint32_t*)9), 0x12345678);
EXPECT_EQ(eeprom_read_dword((uint32_t*)200), 0xfacef00d);
EXPECT_EQ(eeprom_read_dword((uint32_t*)(EEPROM_SIZE - 4)), 0xba5eba11); // Aligned
EXPECT_EQ(eeprom_read_dword((uint32_t*)(EEPROM_SIZE - 9)), 0xcafed00d); // Unaligned
/* Write Log byte encoded */
eeprom_write_dword((uint32_t*)0, 0xdecafbad);
eeprom_write_dword((uint32_t*)9, 0x87654321);
/* Write Log word encoded */
eeprom_write_dword((uint32_t*)200, 1);
/* Write Log word value aligned */
eeprom_write_dword((uint32_t*)(EEPROM_SIZE - 4), 0xdeadc0de); // Aligned
eeprom_write_dword((uint32_t*)(EEPROM_SIZE - 9), 0x6789abcd); // Unaligned
/* Check log values */
EEPROM_Init();
EXPECT_EQ(eeprom_read_dword((uint32_t*)0), 0xdecafbad);
EXPECT_EQ(eeprom_read_dword((uint32_t*)9), 0x87654321);
EXPECT_EQ(eeprom_read_dword((uint32_t*)200), 1);
EXPECT_EQ(eeprom_read_dword((uint32_t*)(EEPROM_SIZE - 4)), 0xdeadc0de); // Aligned
EXPECT_EQ(eeprom_read_dword((uint32_t*)(EEPROM_SIZE - 9)), 0x6789abcd); // Unaligned
}
TEST_F(EepromStm32Test, TestBlockRoundTrip) {
char src0[] = "0123456789abcdef";
void* src1 = (void*)&src0[1];
/* Various alignments of src & dst, Address < 0x80 */
eeprom_write_block(src0, (void*)0, sizeof(src0));
eeprom_write_block(src0, (void*)21, sizeof(src0));
eeprom_write_block(src1, (void*)40, sizeof(src0) - 1);
eeprom_write_block(src1, (void*)61, sizeof(src0) - 1);
/* Various alignments of src & dst, Address >= 0x80 */
eeprom_write_block(src0, (void*)140, sizeof(src0));
eeprom_write_block(src0, (void*)161, sizeof(src0));
eeprom_write_block(src1, (void*)180, sizeof(src0) - 1);
eeprom_write_block(src1, (void*)201, sizeof(src0) - 1);
/* Check values */
EEPROM_Init();
char dstBuf[256] = {0};
char* dst0a = (char*)dstBuf;
char* dst0b = (char*)&dstBuf[20];
char* dst1a = (char*)&dstBuf[41];
char* dst1b = (char*)&dstBuf[61];
char* dst0c = (char*)&dstBuf[80];
char* dst0d = (char*)&dstBuf[100];
char* dst1c = (char*)&dstBuf[121];
char* dst1d = (char*)&dstBuf[141];
eeprom_read_block((void*)dst0a, (void*)0, sizeof(src0));
eeprom_read_block((void*)dst0b, (void*)21, sizeof(src0));
eeprom_read_block((void*)dst1a, (void*)40, sizeof(src0) - 1);
eeprom_read_block((void*)dst1b, (void*)61, sizeof(src0) - 1);
eeprom_read_block((void*)dst0c, (void*)140, sizeof(src0));
eeprom_read_block((void*)dst0d, (void*)161, sizeof(src0));
eeprom_read_block((void*)dst1c, (void*)180, sizeof(src0) - 1);
eeprom_read_block((void*)dst1d, (void*)201, sizeof(src0) - 1);
EXPECT_EQ(strcmp((char*)src0, dst0a), 0);
EXPECT_EQ(strcmp((char*)src0, dst0b), 0);
EXPECT_EQ(strcmp((char*)src0, dst0c), 0);
EXPECT_EQ(strcmp((char*)src0, dst0d), 0);
EXPECT_EQ(strcmp((char*)src1, dst1a), 0);
EXPECT_EQ(strcmp((char*)src1, dst1b), 0);
EXPECT_EQ(strcmp((char*)src1, dst1c), 0);
EXPECT_EQ(strcmp((char*)src1, dst1d), 0);
}
TEST_F(EepromStm32Test, TestCompaction) {
/* Direct writes */
eeprom_write_dword((uint32_t*)0, 0xdeadbeef);
eeprom_write_byte((uint8_t*)4, 0x3c);
eeprom_write_word((uint16_t*)6, 0xd00d);
eeprom_write_dword((uint32_t*)150, 0xcafef00d);
eeprom_write_dword((uint32_t*)200, 0x12345678);
/* Fill write log entries */
uint32_t i;
uint32_t val = 0xd8453c6b;
for (i = 0; i < (LOG_SIZE / (sizeof(uint32_t) * 2)); i++) {
val ^= 0x593ca5b3;
val += i;
eeprom_write_dword((uint32_t*)200, val);
}
/* Check values pre-compaction */
EEPROM_Init();
EXPECT_EQ(eeprom_read_dword((uint32_t*)0), 0xdeadbeef);
EXPECT_EQ(eeprom_read_byte((uint8_t*)4), 0x3c);
EXPECT_EQ(eeprom_read_word((uint16_t*)6), 0xd00d);
EXPECT_EQ(eeprom_read_dword((uint32_t*)150), 0xcafef00d);
EXPECT_EQ(eeprom_read_dword((uint32_t*)200), val);
EXPECT_NE(*(uint16_t*)&FlashBuf[LOG_BASE], 0xFFFF);
EXPECT_NE(*(uint16_t*)&FlashBuf[LOG_BASE + LOG_SIZE - 2], 0xFFFF);
/* Run compaction */
eeprom_write_byte((uint8_t*)4, 0x1f);
EEPROM_Init();
EXPECT_EQ(eeprom_read_dword((uint32_t*)0), 0xdeadbeef);
EXPECT_EQ(eeprom_read_byte((uint8_t*)4), 0x1f);
EXPECT_EQ(eeprom_read_word((uint16_t*)6), 0xd00d);
EXPECT_EQ(eeprom_read_dword((uint32_t*)150), 0xcafef00d);
EXPECT_EQ(eeprom_read_dword((uint32_t*)200), val);
EXPECT_EQ(*(uint16_t*)&FlashBuf[LOG_BASE], 0xFFFF);
EXPECT_EQ(*(uint16_t*)&FlashBuf[LOG_BASE + LOG_SIZE - 2], 0xFFFF);
}

View file

@ -0,0 +1,50 @@
/* Copyright 2021 by Don Kjer
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include <stdbool.h>
#include "flash_stm32.h"
uint8_t FlashBuf[MOCK_FLASH_SIZE] = {0};
static bool flash_locked = true;
FLASH_Status FLASH_ErasePage(uint32_t Page_Address) {
if (flash_locked) return FLASH_ERROR_WRP;
Page_Address -= (uintptr_t)FlashBuf;
Page_Address -= (Page_Address % FEE_PAGE_SIZE);
if (Page_Address >= MOCK_FLASH_SIZE) return FLASH_BAD_ADDRESS;
memset(&FlashBuf[Page_Address], '\xff', FEE_PAGE_SIZE);
return FLASH_COMPLETE;
}
FLASH_Status FLASH_ProgramHalfWord(uint32_t Address, uint16_t Data) {
if (flash_locked) return FLASH_ERROR_WRP;
Address -= (uintptr_t)FlashBuf;
if (Address >= MOCK_FLASH_SIZE) return FLASH_BAD_ADDRESS;
uint16_t oldData = *(uint16_t*)&FlashBuf[Address];
if (oldData == 0xFFFF || Data == 0) {
*(uint16_t*)&FlashBuf[Address] = Data;
return FLASH_COMPLETE;
} else {
return FLASH_ERROR_PG;
}
}
FLASH_Status FLASH_WaitForLastOperation(uint32_t Timeout) { return FLASH_COMPLETE; }
void FLASH_Unlock(void) { flash_locked = false; }
void FLASH_Lock(void) { flash_locked = true; }
void FLASH_ClearFlag(uint32_t FLASH_FLAG) {}

View file

@ -0,0 +1,23 @@
eeprom_stm32_DEFS := -DFLASH_STM32_MOCKED -DNO_PRINT -DFEE_FLASH_BASE=FlashBuf
eeprom_stm32_tiny_DEFS := $(eeprom_stm32_DEFS) \
-DFEE_MCU_FLASH_SIZE=1 \
-DMOCK_FLASH_SIZE=1024 \
-DFEE_PAGE_SIZE=512 \
-DFEE_DENSITY_PAGES=1
eeprom_stm32_large_DEFS := $(eeprom_stm32_DEFS) \
-DFEE_MCU_FLASH_SIZE=64 \
-DMOCK_FLASH_SIZE=65536 \
-DFEE_PAGE_SIZE=2048 \
-DFEE_DENSITY_PAGES=16
eeprom_stm32_INC := \
$(TMK_PATH)/common/chibios/
eeprom_stm32_tiny_INC := $(eeprom_stm32_INC)
eeprom_stm32_large_INC := $(eeprom_stm32_INC)
eeprom_stm32_SRC := \
$(TMK_PATH)/common/test/eeprom_stm32_tests.cpp \
$(TMK_PATH)/common/test/flash_stm32_mock.c \
$(TMK_PATH)/common/chibios/eeprom_stm32.c
eeprom_stm32_tiny_SRC := $(eeprom_stm32_SRC)
eeprom_stm32_large_SRC := $(eeprom_stm32_SRC)

View file

@ -0,0 +1 @@
TEST_LIST += eeprom_stm32_tiny eeprom_stm32_large

317
util/stm32eeprom_parser.py Executable file
View file

@ -0,0 +1,317 @@
#!/usr/bin/env python
#
# Copyright 2021 Don Kjer
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
from __future__ import print_function
import argparse
from struct import pack, unpack
import os, sys
MAGIC_FEEA = '\xea\xff\xfe\xff'
MAGIC_FEE9 = '\x16\x01'
EMPTY_WORD = '\xff\xff'
WORD_ENCODING = 0x8000
VALUE_NEXT = 0x6000
VALUE_RESERVED = 0x4000
VALUE_ENCODED = 0x2000
BYTE_RANGE = 0x80
CHUNK_SIZE = 1024
STRUCT_FMTS = {
1: 'B',
2: 'H',
4: 'I'
}
PRINTABLE='0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~ '
EECONFIG_V1 = [
("MAGIC", 0, 2),
("DEBUG", 2, 1),
("DEFAULT_LAYER", 3, 1),
("KEYMAP", 4, 1),
("MOUSEKEY_ACCEL", 5, 1),
("BACKLIGHT", 6, 1),
("AUDIO", 7, 1),
("RGBLIGHT", 8, 4),
("UNICODEMODE", 12, 1),
("STENOMODE", 13, 1),
("HANDEDNESS", 14, 1),
("KEYBOARD", 15, 4),
("USER", 19, 4),
("VELOCIKEY", 23, 1),
("HAPTIC", 24, 4),
("MATRIX", 28, 4),
("MATRIX_EXTENDED", 32, 2),
("KEYMAP_UPPER_BYTE", 34, 1),
]
VIABASE_V1 = 35
VERBOSE = False
def parseArgs():
parser = argparse.ArgumentParser(description='Decode an STM32 emulated eeprom dump')
parser.add_argument('-s', '--size', type=int,
help='Size of the emulated eeprom (default: input_size / 2)')
parser.add_argument('-o', '--output', help='File to write decoded eeprom to')
parser.add_argument('-y', '--layout-options-size', type=int,
help='VIA layout options size (default: 1)', default=1)
parser.add_argument('-t', '--custom-config-size', type=int,
help='VIA custom config size (default: 0)', default=0)
parser.add_argument('-l', '--layers', type=int,
help='VIA keyboard layers (default: 4)', default=4)
parser.add_argument('-r', '--rows', type=int, help='VIA matrix rows')
parser.add_argument('-c', '--cols', type=int, help='VIA matrix columns')
parser.add_argument('-m', '--macros', type=int,
help='VIA macro count (default: 16)', default=16)
parser.add_argument('-C', '--canonical', action='store_true',
help='Canonical hex+ASCII display.')
parser.add_argument('-v', '--verbose', action='store_true', help='Verbose output')
parser.add_argument('input', help='Raw contents of the STM32 flash area used to emulate eeprom')
return parser.parse_args()
def decodeEepromFEEA(in_file, size):
decoded=size*[None]
pos = 0
while True:
chunk = in_file.read(CHUNK_SIZE)
for i in range(0, len(chunk), 2):
decoded[pos] = unpack('B', chunk[i])[0]
pos += 1
if pos >= size:
break
if len(chunk) < CHUNK_SIZE or pos >= size:
break
return decoded
def decodeEepromFEE9(in_file, size):
decoded=size*[None]
pos = 0
# Read compacted flash
while True:
read_size = min(size - pos, CHUNK_SIZE)
chunk = in_file.read(read_size)
for i in range(len(chunk)):
decoded[pos] = unpack('B', chunk[i])[0] ^ 0xFF
pos += 1
if pos >= size:
break
if len(chunk) < read_size or pos >= size:
break
if VERBOSE:
print("COMPACTED EEPROM:")
dumpBinary(decoded, True)
print("WRITE LOG:")
# Read write log
while True:
entry = in_file.read(2)
if len(entry) < 2:
print("Partial log address at position 0x%04x" % pos, file=sys.stderr)
break
pos += 2
if entry == EMPTY_WORD:
break
be_entry = unpack('>H', entry)[0]
entry = unpack('H', entry)[0]
if not (entry & WORD_ENCODING):
address = entry >> 8
decoded[address] = entry & 0xFF
if VERBOSE:
print("[0x%04x]: BYTE 0x%02x = 0x%02x" % (be_entry, address, decoded[address]))
else:
if (entry & VALUE_NEXT) == VALUE_NEXT:
# Read next word as value
value = in_file.read(2)
if len(value) < 2:
print("Partial log value at position 0x%04x" % pos, file=sys.stderr)
break
pos += 2
address = entry & 0x1FFF
address <<= 1
address += BYTE_RANGE
decoded[address] = unpack('B', value[0])[0] ^ 0xFF
decoded[address+1] = unpack('B', value[1])[0] ^ 0xFF
be_value = unpack('>H', value)[0]
if VERBOSE:
print("[0x%04x 0x%04x]: WORD 0x%04x = 0x%02x%02x" % (be_entry, be_value, address, decoded[address+1], decoded[address]))
else:
# Reserved for future use
if entry & VALUE_RESERVED:
if VERBOSE:
print("[0x%04x]: RESERVED 0x%04x" % (be_entry, address))
continue
address = entry & 0x1FFF
address <<= 1
decoded[address] = (entry & VALUE_ENCODED) >> 13
decoded[address+1] = 0
if VERBOSE:
print("[0x%04x]: ENCODED 0x%04x = 0x%02x%02x" % (be_entry, address, decoded[address+1], decoded[address]))
return decoded
def dumpBinary(data, canonical):
def display(pos, row):
print("%04x" % pos, end='')
for i in range(len(row)):
if i % 8 == 0:
print(" ", end='')
char = row[i]
if char is None:
print(" ", end='')
else:
print(" %02x" % row[i], end='')
if canonical:
print(" |", end='')
for i in range(len(row)):
char = row[i]
if char is None:
char = " "
else:
char = chr(char)
if char not in PRINTABLE:
char = "."
print(char, end='')
print("|", end='')
print("")
size = len(data)
empty_rows = 0
prev_row = ''
first_repeat = True
for pos in range(0, size, 16):
row=data[pos:pos+16]
row[len(row):16] = (16-len(row))*[None]
if row == prev_row:
if first_repeat:
print("*")
first_repeat = False
else:
first_repeat = True
display(pos, row)
prev_row = row
print("%04x" % (pos+16))
def dumpEeconfig(data, eeconfig):
print("EECONFIG:")
for (name, pos, length) in eeconfig:
fmt = STRUCT_FMTS[length]
value = unpack(fmt, ''.join([chr(x) for x in data[pos:pos+length]]))[0]
print(("%%04x %%s = 0x%%0%dx" % (length * 2)) % (pos, name, value))
def dumpVia(data, base, layers, cols, rows, macros,
layout_options_size, custom_config_size):
magicYear = data[base + 0]
magicMonth = data[base + 1]
magicDay = data[base + 2]
# Sanity check
if not 10 <= magicYear <= 0x99 or \
not 0 <= magicMonth <= 0x12 or \
not 0 <= magicDay <= 0x31:
print("ERROR: VIA Signature is not valid; Year:%x, Month:%x, Day:%x" % (magicYear, magicMonth, magicDay))
return
if cols is None or rows is None:
print("ERROR: VIA dump requires specifying --rows and --cols", file=sys.stderr)
return 2
print("VIA:")
# Decode magic
print("%04x MAGIC = 20%02x-%02x-%02x" % (base, magicYear, magicMonth, magicDay))
# Decode layout options
options = 0
pos = base + 3
for i in range(base+3, base+3+layout_options_size):
options = options << 8
options |= data[i]
print(("%%04x LAYOUT_OPTIONS = 0x%%0%dx" % (layout_options_size * 2)) % (pos, options))
pos += layout_options_size + custom_config_size
# Decode keycodes
keymap_size = layers * rows * cols * 2
if (pos + keymap_size) >= (len(data) - 1):
print("ERROR: VIA keymap requires %d bytes, but only %d available" % (keymap_size, len(data) - pos))
return 3
for layer in range(layers):
print("%s LAYER %d %s" % ('-'*int(cols*2.5), layer, '-'*int(cols*2.5)))
for row in range(rows):
print("%04x | " % pos, end='')
for col in range(cols):
keycode = (data[pos] << 8) | (data[pos+1])
print(" %04x" % keycode, end='')
pos += 2
print("")
# Decode macros
for macro_num in range(macros):
macro = ""
macro_pos = pos
while pos < len(data):
char = chr(data[pos])
pos += 1
if char == '\x00':
print("%04x MACRO[%d] = '%s'" % (macro_pos, macro_num, macro))
break
else:
macro += char
return 0
def decodeSTM32Eeprom(input, canonical, size=None, output=None, **kwargs):
input_size = os.path.getsize(input)
if size is None:
size = input_size >> 1
# Read the first few bytes to check magic signature
with open(input, 'rb') as in_file:
magic=in_file.read(4)
in_file.seek(0)
if magic == MAGIC_FEEA:
decoded = decodeEepromFEEA(in_file, size)
eeconfig = EECONFIG_V1
via_base = VIABASE_V1
elif magic[:2] == MAGIC_FEE9:
decoded = decodeEepromFEE9(in_file, size)
eeconfig = EECONFIG_V1
via_base = VIABASE_V1
else:
print("Unknown magic signature: %s" % " ".join(["0x%02x" % ord(x) for x in magic]), file=sys.stderr)
return 1
if output is not None:
with open(output, 'wb') as out_file:
out_file.write(pack('%dB' % len(decoded), *decoded))
print("DECODED EEPROM:")
dumpBinary(decoded, canonical)
dumpEeconfig(decoded, eeconfig)
if kwargs['rows'] is not None and kwargs['cols'] is not None:
return dumpVia(decoded, via_base, **kwargs)
return 0
def main():
global VERBOSE
kwargs = vars(parseArgs())
VERBOSE = kwargs.pop('verbose')
return decodeSTM32Eeprom(**kwargs)
if __name__ == '__main__':
sys.exit(main())