* Re-fix the dual-bank bootloader stuff.
* Use wait_ms() instead of using nop's for a delay, as ChibiOS is actually running at the time of bootloader jump.
Mousekey scrolling should have a separate repeat variable
to keep track of scrolling acceleration, instead of being
tied to mouse movement scolling in mousekeys. The send function
should record when the last movement was made since this is
when movement is actually sent. Doing this fixes the bug where
the initial press of a mousekey scroll button causes a double scroll.
Signed-off-by: Daniel Hong <daniel.hong@live.com>
Fixes the handling for the oneshot cleanup, so it only cleans up if it is active. It should not cleanup of SHO is off (eg using a normal oneshot key), nor if it's actively pressed or used.
Previous behavior BROKE swap hand key.
* I2C_TIMEOUT is not defined on arm teensy
* Work round teensy having different ChibiOS config options
* Stash OLED conf files
* update comment
* update comment
* Remove stm32 alias to allow teensy alt mode
With this change, when ps2_mouse is disabled, mousekeys works as usual. With
ps2_mouse enabled, mousekeys button state is shared with ps2_mouse for clicking,
dragging, and scrolling, mousekeys clicks are produced by ps2_mouse only, and
mouskeys button state is transferred to mousekeys without generating clicks to
enable mousekeys dragging.
Co-authored-by: Drashna Jaelre <drashna@live.com>
Co-authored-by: Drashna Jaelre <drashna@live.com>
* init
* add RETRO_TAP; tap anyway after TAP_TERM, if no interruption
* RETRO_TAP works for other types of taps
* revert to upstream/master
* explain this fork in readme
* use one readme.md file instaed
* fix the error if NO_ACTION_ONESHOT is defined
* restore readme.md to upstream master
Co-authored-by: Tsan-Kuang Lee <tsan.kuang.lee@gmail.com>
* Branch point for 2020 May 30 Breaking Change
* Migrate `ACTION_LAYER_TOGGLE` to `TG()` (#8954)
* Migrate `ACTION_MODS_ONESHOT` to `OSM()` (#8957)
* Migrate `ACTION_DEFAULT_LAYER_SET` to `DF()` (#8958)
* Migrate `ACTION_LAYER_MODS` to `LM()` (#8959)
* Migrate `ACTION_MODS_TAP_KEY` to `MT()` (#8968)
* Convert V-USB usbdrv to a submodule (#8321)
* Unify Tap Hold functions and documentation (#8348)
* Changing board names to prevent confusion (#8412)
* Move the Keyboardio Model01 to a keyboardio/ subdir (#8499)
* Move spaceman keyboards (#8830)
* Migrate miscellaneous `fn_actions` entries (#8977)
* Migrate `ACTION_MODS_KEY` to chained mod keycodes (#8979)
* Organizing my keyboards (plaid, tartan, ergoinu) (#8537)
* Refactor Lily58 to use split_common (#6260)
* Refactor zinc to use split_common (#7114)
* Add a message if bin/qmk doesn't work (#9000)
* Fix conflicting types for 'tfp_printf' (#8269)
* Fixed RGB_DISABLE_AFTER_TIMEOUT to be seconds based & small internals cleanup (#6480)
* Refactor and updates to TKC1800 code (#8472)
* Switch to qmk forks for everything (#9019)
* audio refactor: replace deprecated PLAY_NOTE_ARRAY (#8484)
* Audio enable corrections (2/3) (#8903)
* Split HHKB to ANSI and JP layouts and Add VIA support for each (#8582)
* Audio enable corrections (Part 4) (#8974)
* Fix typo from PR7114 (#9171)
* Augment future branch Changelogs (#8978)
* Revert "Branch point for 2020 May 30 Breaking Change"
This commits add the SH_OS keycode, which works similarly to one shot
layers:
* while pressed, the keyboard is swapped
* if no keys were pressed while it was pressed, the next key press is
swapped
SH_OS also supports chaining with one shot layers:
OSL(x) + SH_OS + key interprets the key press on the oneshot layer.
The ONESHOT_TIMEOUT setting used by one shot keys and layers is also
used by oneshot swap hands. In the above chaining scenario the timeout
of the oneshot layer is reset when swap hands is activated.
Resolves#2682
* Refactor to use mpaland/printf
* trim firmware size
* remove keymap changes
* run clang format
* Fixup after rebase
* fix up git-submodule command for printf
* tmk_core/common: Fixing TIMER_DIFF macro to calculate difference correctly after the timer wraps.
Let's go through an example, using the following macro:
If the first timer read is 0xe4 and the second one is 0x32, the timer wrapped.
If the timer would have had more bits, it's new value would have been 0x132,
and the correct difference in time is 0x132 - 0xe4 = 0x4e
old code TIMER_DIFF_8(0x32, 0xe4) = 0xff - 0xe4 + 0x32 = 0x4d, which is wrong.
new code TIMER_DIFF_8(0x32, 0xe4) = 0xff + 1 - 0xe4 + 0x32 = 0x4e, which is correct.
This also gives a chance for a smart compiler to optimize the code using normal
integer overflow.
For example on AVR, the following C code:
uint8_t __attribute__ ((noinline)) test(uint8_t current_timer, uint8_t start_timer)
{
return TIMER_DIFF_8(current_timer, start_timer);
}
With the original code, it gets translated to the following list of instructions:
00004c6e <test>:
4c6e: 98 2f mov r25, r24
4c70: 86 1b sub r24, r22
4c72: 96 17 cp r25, r22
4c74: 08 f4 brcc .+2 ; 0x4c78 <test+0xa>
4c76: 81 50 subi r24, 0x01 ; 1
4c78: 08 95 ret
But with this commit, it gets translated to a single instruction:
00004c40 <test>:
4c40: 86 1b sub r24, r22
4c42: 08 95 ret
This unfortunately doesn't always work so nicely, for example the following C code:
int __attribute__ ((noinline)) test(uint8_t current_timer, uint8_t start_timer)
{
return TIMER_DIFF_8(current_timer, start_timer);
}
(Note: return type changed to int)
With the original code it gets translated to:
00004c6e <test>:
4c6e: 28 2f mov r18, r24
4c70: 30 e0 ldi r19, 0x00 ; 0
4c72: 46 2f mov r20, r22
4c74: 50 e0 ldi r21, 0x00 ; 0
4c76: 86 17 cp r24, r22
4c78: 20 f0 brcs .+8 ; 0x4c82 <test+0x14>
4c7a: c9 01 movw r24, r18
4c7c: 84 1b sub r24, r20
4c7e: 95 0b sbc r25, r21
4c80: 08 95 ret
4c82: c9 01 movw r24, r18
4c84: 84 1b sub r24, r20
4c86: 95 0b sbc r25, r21
4c88: 81 50 subi r24, 0x01 ; 1
4c8a: 9f 4f sbci r25, 0xFF ; 255
4c8c: 08 95 ret
Wth this commit it gets translated to:
00004c40 <test>:
4c40: 28 2f mov r18, r24
4c42: 30 e0 ldi r19, 0x00 ; 0
4c44: 46 2f mov r20, r22
4c46: 50 e0 ldi r21, 0x00 ; 0
4c48: 86 17 cp r24, r22
4c4a: 20 f0 brcs .+8 ; 0x4c54 <test+0x14>
4c4c: c9 01 movw r24, r18
4c4e: 84 1b sub r24, r20
4c50: 95 0b sbc r25, r21
4c52: 08 95 ret
4c54: c9 01 movw r24, r18
4c56: 84 1b sub r24, r20
4c58: 95 0b sbc r25, r21
4c5a: 93 95 inc r25
4c5c: 08 95 ret
There is not much performance improvement in this case, however at least with this
commit it functions correctly.
Note: The following commit will improve compiler output for the latter example.
* tmk_core/common: Improve code generation for TIMER_DIFF* macros
Because of integer promotion the compiler is having a hard time generating
efficient code to calculate TIMER_DIFF* macros in some situations.
In the below example, the return value is "int", and this is causing the
trouble.
Example C code:
int __attribute__ ((noinline)) test(uint8_t current_timer, uint8_t start_timer)
{
return TIMER_DIFF_8(current_timer, start_timer);
}
BEFORE: (with -Os)
00004c40 <test>:
4c40: 28 2f mov r18, r24
4c42: 30 e0 ldi r19, 0x00 ; 0
4c44: 46 2f mov r20, r22
4c46: 50 e0 ldi r21, 0x00 ; 0
4c48: 86 17 cp r24, r22
4c4a: 20 f0 brcs .+8 ; 0x4c54 <test+0x14>
4c4c: c9 01 movw r24, r18
4c4e: 84 1b sub r24, r20
4c50: 95 0b sbc r25, r21
4c52: 08 95 ret
4c54: c9 01 movw r24, r18
4c56: 84 1b sub r24, r20
4c58: 95 0b sbc r25, r21
4c5a: 93 95 inc r25
4c5c: 08 95 ret
AFTER: (with -Os)
00004c40 <test>:
4c40: 86 1b sub r24, r22
4c42: 90 e0 ldi r25, 0x00 ; 0
4c44: 08 95 ret
Note: the example is showing -Os but improvements can be seen at all optimization levels,
including -O0. We never use -O0, but I tested it to make sure that no extra code is
generated in that case.OA
* quantum/debounce: Fix custom wrapping timers in eager_pr and eager_pk debounce algorithms
Please see the below simulated sequence of events:
Column A is the 16-bit value returned by read_timer();
Column B is the value returned by custom_wrap_timer_read();
Column C is the original code: (timer_read() % MAX_DEBOUNCE)
A, B, C
65530, 19, 30
65531, 20, 31
65532, 21, 32
65533, 22, 33
65534, 23, 34
65535, 24, 35
0 25, 0
1, 26, 1
2, 27, 2
3, 28, 3
4, 29, 4
5, 30, 5
read_timer() wraps about every 1.09 seconds, and so debouncing might
fail at these times without this commit.
* quantum/debounce/eager_pr and eager_pk: modifications for code readability according to code review.
* quantum/debounce/eager_pr and eager_pk: modifications for code readability according to code review. (2)
* Define NO_ACTION_MACRO/FUNCTION in header instead of makefile when LTO is enabled
Currently, boards and keymaps that define NO_ACTION_MACRO/FUNCTION unconditionally
will not compile with LTO_ENABLE (#8604). This fixes the issue by moving the
definitions from common.mk to action.h, which enables us to check for previous
definitions of those macros (this cannot be done in a makefile).
* Remove LTO checks in templates
Since now NO_ACTION_MACRO/FUNCTION are defined as needed in action.h (which is
included by quantum.h), checking for LTO in keyboard and user code is no
longer required.
* Update LTO_ENABLE docs
* Update tmk_core/common/progmem.h
Co-Authored-By: Ryan <fauxpark@gmail.com>
* Update quantum/rgblight.c
Co-Authored-By: Ryan <fauxpark@gmail.com>
* fixed problem with implicit declaration in quantum/rgblight.c (#8381)
Co-authored-by: Ryan <fauxpark@gmail.com>
* Port over some AVR backlight logic to SLEEP_LED
* Port over some AVR backlight logic to SLEEP_LED - add timer 3
* Port over some AVR backlight logic to SLEEP_LED - clang format
* Enable SLEEP_LED within vusb protocol
* Improve process_record system
Code based on @colinta's
* Rename and better handle functions
* Fix incorrect function call to process_record_user
* Add documentation for post_process_record
* Add both get_event_keycode and get_record_keycode functions
And add some comments about these functions
* Update code format
* Cleanup merge artifacts
* Add support for Bootmagic lite when using SPLIT_HAND_PIN
* Deduplicate bootmagic_lite logic from within via
* Revert location of defaults so that user overrides still work for now
* Tidy up code slightly