1
0
Fork 0
forked from forks/qmk_firmware
qmk_firmware/quantum/process_keycode/process_leader.c
Jeff Epler 9632360caa
Use a macro to compute the size of arrays at compile time (#18044)
* Add ARRAY_SIZE and CEILING utility macros

* Apply a coccinelle patch to use ARRAY_SIZE

* fix up some straggling items

* Fix 'make test:secure'

* Enhance ARRAY_SIZE macro to reject acting on pointers

The previous definition would not produce a diagnostic for
```
int *p;
size_t num_elem = ARRAY_SIZE(p)
```
but the new one will.

* explicitly get definition of ARRAY_SIZE

* Convert to ARRAY_SIZE when const is involved

The following spatch finds additional instances where the array is
const and the division is by the size of the type, not the size of
the first element:
```
@ rule5a using "empty.iso" @
type T;
const T[] E;
@@

- (sizeof(E)/sizeof(T))
+ ARRAY_SIZE(E)

@ rule6a using "empty.iso" @
type T;
const T[] E;
@@

- sizeof(E)/sizeof(T)
+ ARRAY_SIZE(E)
```

* New instances of ARRAY_SIZE added since initial spatch run

* Use `ARRAY_SIZE` in docs (found by grep)

* Manually use ARRAY_SIZE

hs_set is expected to be the same size as uint16_t, though it's made
of two 8-bit integers

* Just like char, sizeof(uint8_t) is guaranteed to be 1

This is at least true on any plausible system where qmk is actually used.

Per my understanding it's universally true, assuming that uint8_t exists:
https://stackoverflow.com/questions/48655310/can-i-assume-that-sizeofuint8-t-1

* Run qmk-format on core C files touched in this branch

Co-authored-by: Stefan Kerkmann <karlk90@pm.me>
2022-08-30 10:20:04 +02:00

84 lines
2.5 KiB
C

/* Copyright 2016 Jack Humbert
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef LEADER_ENABLE
# include "process_leader.h"
# include <string.h>
# ifndef LEADER_TIMEOUT
# define LEADER_TIMEOUT 300
# endif
__attribute__((weak)) void leader_start(void) {}
__attribute__((weak)) void leader_end(void) {}
// Leader key stuff
bool leading = false;
uint16_t leader_time = 0;
uint16_t leader_sequence[5] = {0, 0, 0, 0, 0};
uint8_t leader_sequence_size = 0;
void qk_leader_start(void) {
if (leading) {
return;
}
leader_start();
leading = true;
leader_time = timer_read();
leader_sequence_size = 0;
memset(leader_sequence, 0, sizeof(leader_sequence));
}
bool process_leader(uint16_t keycode, keyrecord_t *record) {
// Leader key set-up
if (record->event.pressed) {
if (leading) {
# ifndef LEADER_NO_TIMEOUT
if (timer_elapsed(leader_time) < LEADER_TIMEOUT)
# endif // LEADER_NO_TIMEOUT
{
# ifndef LEADER_KEY_STRICT_KEY_PROCESSING
if ((keycode >= QK_MOD_TAP && keycode <= QK_MOD_TAP_MAX) || (keycode >= QK_LAYER_TAP && keycode <= QK_LAYER_TAP_MAX)) {
keycode = keycode & 0xFF;
}
# endif // LEADER_KEY_STRICT_KEY_PROCESSING
if (leader_sequence_size < ARRAY_SIZE(leader_sequence)) {
leader_sequence[leader_sequence_size] = keycode;
leader_sequence_size++;
} else {
leading = false;
leader_end();
return true;
}
# ifdef LEADER_PER_KEY_TIMING
leader_time = timer_read();
# endif
return false;
}
} else {
if (keycode == KC_LEAD) {
qk_leader_start();
}
}
}
return true;
}
#endif