1
0
Fork 0
forked from forks/qmk_firmware
qmk_firmware/keyboards/hhkb/jp/matrix.c
Ryan bd70f5261c
Remove matrix_key_count() (#16603)
* Remove `matrix_key_count()`

* Remove `matrix_bitpop()`
2022-03-10 12:18:07 +00:00

199 lines
5.3 KiB
C

/*
Copyright 2011 Jun Wako <wakojun@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* scan matrix
*/
#include <stdint.h>
#include <stdbool.h>
#include <util/delay.h>
#include "print.h"
#include "debug.h"
#include "util.h"
#include "timer.h"
#include "matrix.h"
#include "avr/timer_avr.h"
#include "hhkb_avr.h"
#include <avr/wdt.h>
#include "suspend.h"
#include "lufa.h"
// matrix power saving
#define MATRIX_POWER_SAVE 10000
static uint32_t matrix_last_modified = 0;
// matrix state buffer(1:on, 0:off)
static matrix_row_t *matrix;
static matrix_row_t *matrix_prev;
static matrix_row_t _matrix0[MATRIX_ROWS];
static matrix_row_t _matrix1[MATRIX_ROWS];
inline
uint8_t matrix_rows(void)
{
return MATRIX_ROWS;
}
inline
uint8_t matrix_cols(void)
{
return MATRIX_COLS;
}
void matrix_init(void)
{
#ifdef DEBUG
debug_enable = true;
debug_keyboard = true;
#endif
KEY_INIT();
// initialize matrix state: all keys off
for (uint8_t i=0; i < MATRIX_ROWS; i++) _matrix0[i] = 0x00;
for (uint8_t i=0; i < MATRIX_ROWS; i++) _matrix1[i] = 0x00;
matrix = _matrix0;
matrix_prev = _matrix1;
matrix_init_quantum();
}
__attribute__((weak)) void matrix_init_kb(void) { matrix_init_user(); }
__attribute__((weak)) void matrix_scan_kb(void) { matrix_scan_user(); }
__attribute__((weak)) void matrix_init_user(void) {}
__attribute__((weak)) void matrix_scan_user(void) {}
uint8_t matrix_scan(void)
{
uint8_t *tmp;
tmp = matrix_prev;
matrix_prev = matrix;
matrix = tmp;
// power on
if (!KEY_POWER_STATE()) KEY_POWER_ON();
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
for (uint8_t col = 0; col < MATRIX_COLS; col++) {
KEY_SELECT(row, col);
_delay_us(5);
// Not sure this is needed. This just emulates HHKB controller's behaviour.
if (matrix_prev[row] & (1<<col)) {
KEY_PREV_ON();
}
_delay_us(10);
// NOTE: KEY_STATE is valid only in 20us after KEY_ENABLE.
// If V-USB interrupts in this section we could lose 40us or so
// and would read invalid value from KEY_STATE.
uint8_t last = TIMER_RAW;
KEY_ENABLE();
// Wait for KEY_STATE outputs its value.
// 1us was ok on one HHKB, but not worked on another.
// no wait doesn't work on Teensy++ with pro(1us works)
// no wait does work on tmk PCB(8MHz) with pro2
// 1us wait does work on both of above
// 1us wait doesn't work on tmk(16MHz)
// 5us wait does work on tmk(16MHz)
// 5us wait does work on tmk(16MHz/2)
// 5us wait does work on tmk(8MHz)
// 10us wait does work on Teensy++ with pro
// 10us wait does work on 328p+iwrap with pro
// 10us wait doesn't work on tmk PCB(8MHz) with pro2(very lagged scan)
_delay_us(5);
if (KEY_STATE()) {
matrix[row] &= ~(1<<col);
} else {
matrix[row] |= (1<<col);
}
// Ignore if this code region execution time elapses more than 20us.
// MEMO: 20[us] * (TIMER_RAW_FREQ / 1000000)[count per us]
// MEMO: then change above using this rule: a/(b/c) = a*1/(b/c) = a*(c/b)
if (TIMER_DIFF_RAW(TIMER_RAW, last) > 20/(1000000/TIMER_RAW_FREQ)) {
matrix[row] = matrix_prev[row];
}
_delay_us(5);
KEY_PREV_OFF();
KEY_UNABLE();
// NOTE: KEY_STATE keep its state in 20us after KEY_ENABLE.
// This takes 25us or more to make sure KEY_STATE returns to idle state.
// Looks like JP needs faster scan due to its twice larger matrix
// or it can drop keys in fast key typing
_delay_us(30);
}
if (matrix[row] ^ matrix_prev[row]) matrix_last_modified = timer_read32();
}
// power off
if (KEY_POWER_STATE() &&
(USB_DeviceState == DEVICE_STATE_Suspended ||
USB_DeviceState == DEVICE_STATE_Unattached ) &&
timer_elapsed32(matrix_last_modified) > MATRIX_POWER_SAVE) {
KEY_POWER_OFF();
suspend_power_down();
}
matrix_scan_quantum();
return 1;
}
inline
bool matrix_has_ghost(void)
{
return false;
}
inline
bool matrix_is_on(uint8_t row, uint8_t col)
{
return (matrix[row] & (1<<col));
}
inline
matrix_row_t matrix_get_row(uint8_t row)
{
return matrix[row];
}
void matrix_print(void)
{
print("\nr/c 01234567\n");
for (uint8_t row = 0; row < matrix_rows(); row++) {
xprintf("%02X: %08b\n", row, bitrev(matrix_get_row(row)));
}
}
void matrix_power_up(void) {
KEY_POWER_ON();
}
void matrix_power_down(void) {
KEY_POWER_OFF();
}