1
0
Fork 0
forked from forks/qmk_firmware
qmk_firmware/quantum/led_matrix.c
2021-03-28 17:59:44 +11:00

347 lines
12 KiB
C

/* Copyright 2017 Jason Williams
* Copyright 2017 Jack Humbert
* Copyright 2018 Yiancar
* Copyright 2019 Clueboard
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "led_matrix.h"
#include "progmem.h"
#include "config.h"
#include "eeprom.h"
#include <string.h>
#include <math.h>
#include <lib/lib8tion/lib8tion.h>
led_eeconfig_t led_matrix_eeconfig;
#ifndef MAX
# define MAX(X, Y) ((X) > (Y) ? (X) : (Y))
#endif
#ifndef MIN
# define MIN(a, b) ((a) < (b) ? (a) : (b))
#endif
#if defined(LED_DISABLE_AFTER_TIMEOUT) && !defined(LED_DISABLE_TIMEOUT)
# define LED_DISABLE_TIMEOUT (LED_DISABLE_AFTER_TIMEOUT * 1200UL)
#endif
#ifndef LED_DISABLE_TIMEOUT
# define LED_DISABLE_TIMEOUT 0
#endif
#ifndef LED_DISABLE_WHEN_USB_SUSPENDED
# define LED_DISABLE_WHEN_USB_SUSPENDED false
#endif
#if !defined(LED_MATRIX_MAXIMUM_BRIGHTNESS) || LED_MATRIX_MAXIMUM_BRIGHTNESS > UINT8_MAX
# undef LED_MATRIX_MAXIMUM_BRIGHTNESS
# define LED_MATRIX_MAXIMUM_BRIGHTNESS UINT8_MAX
#endif
#if !defined(LED_MATRIX_VAL_STEP)
# define LED_MATRIX_VAL_STEP 8
#endif
#if !defined(LED_MATRIX_SPD_STEP)
# define LED_MATRIX_SPD_STEP 16
#endif
#if !defined(LED_MATRIX_STARTUP_MODE)
# define LED_MATRIX_STARTUP_MODE LED_MATRIX_UNIFORM_BRIGHTNESS
#endif
#if !defined(LED_MATRIX_STARTUP_VAL)
# define LED_MATRIX_STARTUP_VAL LED_MATRIX_MAXIMUM_BRIGHTNESS
#endif
#if !defined(LED_MATRIX_STARTUP_SPD)
# define LED_MATRIX_STARTUP_SPD UINT8_MAX / 2
#endif
bool g_suspend_state = false;
// Global tick at 20 Hz
uint32_t g_tick = 0;
// Ticks since this key was last hit.
uint8_t g_key_hit[DRIVER_LED_TOTAL];
// Ticks since any key was last hit.
uint32_t g_any_key_hit = 0;
void eeconfig_read_led_matrix(void) { eeprom_read_block(&led_matrix_eeconfig, EECONFIG_LED_MATRIX, sizeof(led_matrix_eeconfig)); }
void eeconfig_update_led_matrix(void) { eeprom_update_block(&led_matrix_eeconfig, EECONFIG_LED_MATRIX, sizeof(led_matrix_eeconfig)); }
void eeconfig_update_led_matrix_default(void) {
dprintf("eeconfig_update_led_matrix_default\n");
led_matrix_eeconfig.enable = 1;
led_matrix_eeconfig.mode = LED_MATRIX_STARTUP_MODE;
led_matrix_eeconfig.val = LED_MATRIX_STARTUP_VAL;
led_matrix_eeconfig.speed = LED_MATRIX_STARTUP_SPD;
eeconfig_update_led_matrix();
}
void eeconfig_debug_led_matrix(void) {
dprintf("led_matrix_eeconfig EEPROM\n");
dprintf("led_matrix_eeconfig.enable = %d\n", led_matrix_eeconfig.enable);
dprintf("led_matrix_eeconfig.mode = %d\n", led_matrix_eeconfig.mode);
dprintf("led_matrix_eeconfig.val = %d\n", led_matrix_eeconfig.val);
dprintf("led_matrix_eeconfig.speed = %d\n", led_matrix_eeconfig.speed);
}
uint8_t g_last_led_hit[LED_HITS_TO_REMEMBER] = {255};
uint8_t g_last_led_count = 0;
uint8_t map_row_column_to_led(uint8_t row, uint8_t column, uint8_t *led_i) {
uint8_t led_count = 0;
uint8_t led_index = g_led_config.matrix_co[row][column];
if (led_index != NO_LED) {
led_i[led_count] = led_index;
led_count++;
}
return led_count;
}
void led_matrix_update_pwm_buffers(void) { led_matrix_driver.flush(); }
void led_matrix_set_index_value(int index, uint8_t value) { led_matrix_driver.set_value(index, value); }
void led_matrix_set_index_value_all(uint8_t value) { led_matrix_driver.set_value_all(value); }
bool process_led_matrix(uint16_t keycode, keyrecord_t *record) {
if (record->event.pressed) {
uint8_t led[8];
uint8_t led_count = map_row_column_to_led(record->event.key.row, record->event.key.col, led);
if (led_count > 0) {
for (uint8_t i = LED_HITS_TO_REMEMBER; i > 1; i--) {
g_last_led_hit[i - 1] = g_last_led_hit[i - 2];
}
g_last_led_hit[0] = led[0];
g_last_led_count = MIN(LED_HITS_TO_REMEMBER, g_last_led_count + 1);
}
for (uint8_t i = 0; i < led_count; i++) g_key_hit[led[i]] = 0;
g_any_key_hit = 0;
} else {
#ifdef LED_MATRIX_KEYRELEASES
uint8_t led[8];
uint8_t led_count = map_row_column_to_led(record->event.key.row, record->event.key.col, led);
for (uint8_t i = 0; i < led_count; i++) g_key_hit[led[i]] = 255;
g_any_key_hit = 255;
#endif
}
return true;
}
void led_matrix_set_suspend_state(bool state) { g_suspend_state = state; }
// All LEDs off
void led_matrix_all_off(void) { led_matrix_set_index_value_all(0); }
// Uniform brightness
void led_matrix_uniform_brightness(void) { led_matrix_set_index_value_all(led_matrix_eeconfig.val); }
void led_matrix_custom(void) {}
void led_matrix_task(void) {
if (!led_matrix_eeconfig.enable) {
led_matrix_all_off();
led_matrix_indicators();
return;
}
g_tick++;
if (g_any_key_hit < 0xFFFFFFFF) {
g_any_key_hit++;
}
for (int led = 0; led < DRIVER_LED_TOTAL; led++) {
if (g_key_hit[led] < 255) {
if (g_key_hit[led] == 254) g_last_led_count = MAX(g_last_led_count - 1, 0);
g_key_hit[led]++;
}
}
// Ideally we would also stop sending zeros to the LED driver PWM buffers
// while suspended and just do a software shutdown. This is a cheap hack for now.
bool suspend_backlight = ((g_suspend_state && LED_DISABLE_WHEN_USB_SUSPENDED) || (LED_DISABLE_TIMEOUT > 0 && g_any_key_hit > LED_DISABLE_TIMEOUT));
uint8_t effect = suspend_backlight ? 0 : led_matrix_eeconfig.mode;
// this gets ticked at 20 Hz.
// each effect can opt to do calculations
// and/or request PWM buffer updates.
switch (effect) {
case LED_MATRIX_UNIFORM_BRIGHTNESS:
led_matrix_uniform_brightness();
break;
default:
led_matrix_custom();
break;
}
if (!suspend_backlight) {
led_matrix_indicators();
}
// Tell the LED driver to update its state
led_matrix_driver.flush();
}
void led_matrix_indicators(void) {
led_matrix_indicators_kb();
led_matrix_indicators_user();
}
__attribute__((weak)) void led_matrix_indicators_kb(void) {}
__attribute__((weak)) void led_matrix_indicators_user(void) {}
void led_matrix_init(void) {
led_matrix_driver.init();
// Wait half a second for the driver to finish initializing
wait_ms(500);
// clear the key hits
for (int led = 0; led < DRIVER_LED_TOTAL; led++) {
g_key_hit[led] = 255;
}
if (!eeconfig_is_enabled()) {
dprintf("led_matrix_init_drivers eeconfig is not enabled.\n");
eeconfig_init();
eeconfig_update_led_matrix_default();
}
eeconfig_read_led_matrix();
if (!led_matrix_eeconfig.mode) {
dprintf("led_matrix_init_drivers led_matrix_eeconfig.mode = 0. Write default values to EEPROM.\n");
eeconfig_update_led_matrix_default();
}
eeconfig_debug_led_matrix(); // display current eeprom values
}
uint32_t led_matrix_get_tick(void) { return g_tick; }
void led_matrix_toggle_eeprom_helper(bool write_to_eeprom) {
led_matrix_eeconfig.enable ^= 1;
if (write_to_eeprom) {
eeconfig_update_led_matrix();
}
dprintf("led matrix toggle [%s]: led_matrix_eeconfig.enable = %u\n", (write_to_eeprom) ? "EEPROM" : "NOEEPROM", led_matrix_eeconfig.enable);
}
void led_matrix_toggle_noeeprom(void) { led_matrix_toggle_eeprom_helper(false); }
void led_matrix_toggle(void) { led_matrix_toggle_eeprom_helper(true); }
void led_matrix_enable(void) {
led_matrix_enable_noeeprom();
eeconfig_update_led_matrix();
}
void led_matrix_enable_noeeprom(void) { led_matrix_eeconfig.enable = 1; }
void led_matrix_disable(void) {
led_matrix_disable_noeeprom();
eeconfig_update_led_matrix();
}
void led_matrix_disable_noeeprom(void) { led_matrix_eeconfig.enable = 0; }
uint8_t led_matrix_is_enabled(void) { return led_matrix_eeconfig.enable; }
void led_matrix_mode_eeprom_helper(uint8_t mode, bool write_to_eeprom) {
if (!led_matrix_eeconfig.enable) {
return;
}
if (mode < 1) {
led_matrix_eeconfig.mode = 1;
} else if (mode >= LED_MATRIX_EFFECT_MAX) {
led_matrix_eeconfig.mode = LED_MATRIX_EFFECT_MAX - 1;
} else {
led_matrix_eeconfig.mode = mode;
}
if (write_to_eeprom) {
eeconfig_update_led_matrix();
}
dprintf("led matrix mode [%s]: %u\n", (write_to_eeprom) ? "EEPROM" : "NOEEPROM", led_matrix_eeconfig.mode);
}
void led_matrix_mode_noeeprom(uint8_t mode) { led_matrix_mode_eeprom_helper(mode, false); }
void led_matrix_mode(uint8_t mode) { led_matrix_mode_eeprom_helper(mode, true); }
uint8_t led_matrix_get_mode(void) { return led_matrix_eeconfig.mode; }
void led_matrix_step_helper(bool write_to_eeprom) {
uint8_t mode = led_matrix_eeconfig.mode + 1;
led_matrix_mode_eeprom_helper((mode < LED_MATRIX_EFFECT_MAX) ? mode : 1, write_to_eeprom);
}
void led_matrix_step_noeeprom(void) { led_matrix_step_helper(false); }
void led_matrix_step(void) { led_matrix_step_helper(true); }
void led_matrix_step_reverse_helper(bool write_to_eeprom) {
uint8_t mode = led_matrix_eeconfig.mode - 1;
led_matrix_mode_eeprom_helper((mode < 1) ? LED_MATRIX_EFFECT_MAX - 1 : mode, write_to_eeprom);
}
void led_matrix_step_reverse_noeeprom(void) { led_matrix_step_reverse_helper(false); }
void led_matrix_step_reverse(void) { led_matrix_step_reverse_helper(true); }
void led_matrix_set_val_eeprom_helper(uint8_t val, bool write_to_eeprom) {
if (!led_matrix_eeconfig.enable) {
return;
}
led_matrix_eeconfig.val = (val > LED_MATRIX_MAXIMUM_BRIGHTNESS) ? LED_MATRIX_MAXIMUM_BRIGHTNESS : val;
if (write_to_eeprom) {
eeconfig_update_led_matrix();
}
dprintf("led matrix set val [%s]: %u\n", (write_to_eeprom) ? "EEPROM" : "NOEEPROM", led_matrix_eeconfig.val);
}
void led_matrix_set_val_noeeprom(uint8_t val) { led_matrix_set_val_eeprom_helper(val, false); }
void led_matrix_set_val(uint8_t val) { led_matrix_set_val_eeprom_helper(val, true); }
uint8_t led_matrix_get_val(void) { return led_matrix_eeconfig.val; }
void led_matrix_increase_val_helper(bool write_to_eeprom) { led_matrix_set_val_eeprom_helper(qadd8(led_matrix_eeconfig.val, LED_MATRIX_VAL_STEP), write_to_eeprom); }
void led_matrix_increase_val_noeeprom(void) { led_matrix_increase_val_helper(false); }
void led_matrix_increase_val(void) { led_matrix_increase_val_helper(true); }
void led_matrix_decrease_val_helper(bool write_to_eeprom) { led_matrix_set_val_eeprom_helper(qsub8(led_matrix_eeconfig.val, LED_MATRIX_VAL_STEP), write_to_eeprom); }
void led_matrix_decrease_val_noeeprom(void) { led_matrix_decrease_val_helper(false); }
void led_matrix_decrease_val(void) { led_matrix_decrease_val_helper(true); }
void led_matrix_set_speed_eeprom_helper(uint8_t speed, bool write_to_eeprom) {
led_matrix_eeconfig.speed = speed;
if (write_to_eeprom) {
eeconfig_update_led_matrix();
}
dprintf("led matrix set speed [%s]: %u\n", (write_to_eeprom) ? "EEPROM" : "NOEEPROM", led_matrix_eeconfig.speed);
}
void led_matrix_set_speed_noeeprom(uint8_t speed) { led_matrix_set_speed_eeprom_helper(speed, false); }
void led_matrix_set_speed(uint8_t speed) { led_matrix_set_speed_eeprom_helper(speed, true); }
uint8_t led_matrix_get_speed(void) { return led_matrix_eeconfig.speed; }
void led_matrix_increase_speed_helper(bool write_to_eeprom) { led_matrix_set_speed_eeprom_helper(qadd8(led_matrix_eeconfig.speed, LED_MATRIX_SPD_STEP), write_to_eeprom); }
void led_matrix_increase_speed_noeeprom(void) { led_matrix_increase_speed_helper(false); }
void led_matrix_increase_speed(void) { led_matrix_increase_speed_helper(true); }
void led_matrix_decrease_speed_helper(bool write_to_eeprom) { led_matrix_set_speed_eeprom_helper(qsub8(led_matrix_eeconfig.speed, LED_MATRIX_SPD_STEP), write_to_eeprom); }
void led_matrix_decrease_speed_noeeprom(void) { led_matrix_decrease_speed_helper(false); }
void led_matrix_decrease_speed(void) { led_matrix_decrease_speed_helper(true); }