1
0
Fork 0
forked from forks/qmk_firmware
qmk_firmware/quantum/process_keycode/process_unicodemap.c
Konstantin Đorđević cd9262d7b2 Improve consistency in UNICODEMAP code and docs, update docs/understanding_qmk (#4774)
* Remove unused UNICODE(n) macro, update docs

* Add note about max length of unicode_map to docs

* QK_UNICODE_MAP → QK_UNICODEMAP

* Refactor process_unicode_map

* process_unicode_map → process_unicodemap

This is done for consistency: UNICODEMAP is the method (hence UNICODEMAP_ENABLE, process_unicodemap), whereas unicode_map is the mapping table itself.

* Update references and ordering in docs/understanding_qmk

* Add additional note to docs/understanding_qmk

* &unicode_map[index] → unicode_map + index

This avoids the issue of the compiler sometimes complaining about the array index being out of range

* Update docs/getting_started_make_guide

* Update method sections in docs/feature_unicode
2019-01-07 12:56:57 -08:00

72 lines
2.2 KiB
C

/* Copyright 2017 Jack Humbert
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "process_unicodemap.h"
#include "process_unicode_common.h"
__attribute__((weak))
const uint32_t PROGMEM unicode_map[] = {};
void register_hex32(uint32_t hex) {
bool onzerostart = true;
for(int i = 7; i >= 0; i--) {
if (i <= 3) {
onzerostart = false;
}
uint8_t digit = ((hex >> (i*4)) & 0xF);
if (digit == 0) {
if (!onzerostart) {
register_code(hex_to_keycode(digit));
unregister_code(hex_to_keycode(digit));
}
} else {
register_code(hex_to_keycode(digit));
unregister_code(hex_to_keycode(digit));
onzerostart = false;
}
}
}
__attribute__((weak))
void unicodemap_input_error() {}
bool process_unicodemap(uint16_t keycode, keyrecord_t *record) {
if ((keycode & QK_UNICODEMAP) == QK_UNICODEMAP && record->event.pressed) {
uint16_t index = keycode - QK_UNICODEMAP;
uint32_t code = pgm_read_dword(unicode_map + index);
uint8_t input_mode = get_unicode_input_mode();
if (code > 0xFFFF && code <= 0x10FFFF && input_mode == UC_OSX) {
// Convert to UTF-16 surrogate pair
code -= 0x10000;
uint32_t lo = code & 0x3FF, hi = (code & 0xFFC00) >> 10;
unicode_input_start();
register_hex32(hi + 0xD800);
register_hex32(lo + 0xDC00);
unicode_input_finish();
} else if ((code > 0x10FFFF && input_mode == UC_OSX) || (code > 0xFFFFF && input_mode == UC_LNX)) {
// Character is out of range supported by the OS
unicodemap_input_error();
} else {
unicode_input_start();
register_hex32(code);
unicode_input_finish();
}
}
return true;
}