1
0
Fork 0
forked from forks/qmk_firmware
qmk_firmware/visualizer.c
Fred Sundvik c95b17b536 Add simple led support
Also the first version of a led testing animation
2016-04-24 13:46:19 +03:00

484 lines
15 KiB
C

/*
The MIT License (MIT)
Copyright (c) 2016 Fred Sundvik
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#include "visualizer.h"
#include "ch.h"
#include <string.h>
#ifdef LCD_ENABLE
#include "gfx.h"
#endif
#ifdef LCD_BACKLIGHT_ENABLE
#include "lcd_backlight.h"
#endif
//#define DEBUG_VISUALIZER
#ifdef DEBUG_VISUALIZER
#include "debug.h"
#else
#include "nodebug.h"
#endif
#ifdef USE_SERIAL_LINK
#include "serial_link/protocol/transport.h"
#include "serial_link/system/driver.h"
#endif
static visualizer_keyboard_status_t current_status = {
.layer = 0xFFFFFFFF,
.default_layer = 0xFFFFFFFF,
.leds = 0xFFFFFFFF,
.suspended = false,
};
static bool same_status(visualizer_keyboard_status_t* status1, visualizer_keyboard_status_t* status2) {
return status1->layer == status2->layer &&
status1->default_layer == status2->default_layer &&
status1->leds == status2->leds &&
status1->suspended == status2->suspended;
}
static event_source_t layer_changed_event;
static bool visualizer_enabled = false;
#define MAX_SIMULTANEOUS_ANIMATIONS 4
static keyframe_animation_t* animations[MAX_SIMULTANEOUS_ANIMATIONS] = {};
#ifdef USE_SERIAL_LINK
MASTER_TO_ALL_SLAVES_OBJECT(current_status, visualizer_keyboard_status_t);
static remote_object_t* remote_objects[] = {
REMOTE_OBJECT(current_status),
};
#endif
GDisplay* LCDDisplay;
GDisplay* LEDDisplay;
void start_keyframe_animation(keyframe_animation_t* animation) {
animation->current_frame = -1;
animation->time_left_in_frame = 0;
animation->need_update = true;
int free_index = -1;
for (int i=0;i<MAX_SIMULTANEOUS_ANIMATIONS;i++) {
if (animations[i] == animation) {
return;
}
if (free_index == -1 && animations[i] == NULL) {
free_index=i;
}
}
if (free_index!=-1) {
animations[free_index] = animation;
}
}
void stop_keyframe_animation(keyframe_animation_t* animation) {
animation->current_frame = animation->num_frames;
animation->time_left_in_frame = 0;
animation->need_update = true;
for (int i=0;i<MAX_SIMULTANEOUS_ANIMATIONS;i++) {
if (animations[i] == animation) {
animations[i] = NULL;
return;
}
}
}
void stop_all_keyframe_animations(void) {
for (int i=0;i<MAX_SIMULTANEOUS_ANIMATIONS;i++) {
if (animations[i]) {
animations[i]->current_frame = animations[i]->num_frames;
animations[i]->time_left_in_frame = 0;
animations[i]->need_update = true;
animations[i] = NULL;
}
}
}
static bool update_keyframe_animation(keyframe_animation_t* animation, visualizer_state_t* state, systime_t delta, systime_t* sleep_time) {
dprintf("Animation frame%d, left %d, delta %d\n", animation->current_frame,
animation->time_left_in_frame, delta);
if (animation->current_frame == animation->num_frames) {
animation->need_update = false;
return false;
}
if (animation->current_frame == -1) {
animation->current_frame = 0;
animation->time_left_in_frame = animation->frame_lengths[0];
animation->need_update = true;
} else {
animation->time_left_in_frame -= delta;
while (animation->time_left_in_frame <= 0) {
int left = animation->time_left_in_frame;
if (animation->need_update) {
animation->time_left_in_frame = 0;
(*animation->frame_functions[animation->current_frame])(animation, state);
}
animation->current_frame++;
animation->need_update = true;
if (animation->current_frame == animation->num_frames) {
if (animation->loop) {
animation->current_frame = 0;
}
else {
stop_keyframe_animation(animation);
return false;
}
}
delta = -left;
animation->time_left_in_frame = animation->frame_lengths[animation->current_frame];
animation->time_left_in_frame -= delta;
}
}
if (animation->need_update) {
animation->need_update = (*animation->frame_functions[animation->current_frame])(animation, state);
}
int wanted_sleep = animation->need_update ? 10 : animation->time_left_in_frame;
if ((unsigned)wanted_sleep < *sleep_time) {
*sleep_time = wanted_sleep;
}
return true;
}
bool keyframe_no_operation(keyframe_animation_t* animation, visualizer_state_t* state) {
(void)animation;
(void)state;
return false;
}
#ifdef LCD_BACKLIGHT_ENABLE
bool keyframe_animate_backlight_color(keyframe_animation_t* animation, visualizer_state_t* state) {
int frame_length = animation->frame_lengths[animation->current_frame];
int current_pos = frame_length - animation->time_left_in_frame;
uint8_t t_h = LCD_HUE(state->target_lcd_color);
uint8_t t_s = LCD_SAT(state->target_lcd_color);
uint8_t t_i = LCD_INT(state->target_lcd_color);
uint8_t p_h = LCD_HUE(state->prev_lcd_color);
uint8_t p_s = LCD_SAT(state->prev_lcd_color);
uint8_t p_i = LCD_INT(state->prev_lcd_color);
uint8_t d_h1 = t_h - p_h; //Modulo arithmetic since we want to wrap around
int d_h2 = t_h - p_h;
// Chose the shortest way around
int d_h = abs(d_h2) < d_h1 ? d_h2 : d_h1;
int d_s = t_s - p_s;
int d_i = t_i - p_i;
int hue = (d_h * current_pos) / frame_length;
int sat = (d_s * current_pos) / frame_length;
int intensity = (d_i * current_pos) / frame_length;
//dprintf("%X -> %X = %X\n", p_h, t_h, hue);
hue += p_h;
sat += p_s;
intensity += p_i;
state->current_lcd_color = LCD_COLOR(hue, sat, intensity);
lcd_backlight_color(
LCD_HUE(state->current_lcd_color),
LCD_SAT(state->current_lcd_color),
LCD_INT(state->current_lcd_color));
return true;
}
bool keyframe_set_backlight_color(keyframe_animation_t* animation, visualizer_state_t* state) {
(void)animation;
state->prev_lcd_color = state->target_lcd_color;
state->current_lcd_color = state->target_lcd_color;
lcd_backlight_color(
LCD_HUE(state->current_lcd_color),
LCD_SAT(state->current_lcd_color),
LCD_INT(state->current_lcd_color));
return false;
}
#endif // LCD_BACKLIGHT_ENABLE
#ifdef LCD_ENABLE
bool keyframe_display_layer_text(keyframe_animation_t* animation, visualizer_state_t* state) {
(void)animation;
gdispClear(White);
gdispDrawString(0, 10, state->layer_text, state->font_dejavusansbold12, Black);
gdispFlush();
return false;
}
static void format_layer_bitmap_string(uint16_t default_layer, uint16_t layer, char* buffer) {
for (int i=0; i<16;i++)
{
uint32_t mask = (1u << i);
if (default_layer & mask) {
if (layer & mask) {
*buffer = 'B';
} else {
*buffer = 'D';
}
} else if (layer & mask) {
*buffer = '1';
} else {
*buffer = '0';
}
++buffer;
if (i==3 || i==7 || i==11) {
*buffer = ' ';
++buffer;
}
}
*buffer = 0;
}
bool keyframe_display_layer_bitmap(keyframe_animation_t* animation, visualizer_state_t* state) {
(void)animation;
const char* layer_help = "1=On D=Default B=Both";
char layer_buffer[16 + 4]; // 3 spaces and one null terminator
gdispClear(White);
gdispDrawString(0, 0, layer_help, state->font_fixed5x8, Black);
format_layer_bitmap_string(state->status.default_layer, state->status.layer, layer_buffer);
gdispDrawString(0, 10, layer_buffer, state->font_fixed5x8, Black);
format_layer_bitmap_string(state->status.default_layer >> 16, state->status.layer >> 16, layer_buffer);
gdispDrawString(0, 20, layer_buffer, state->font_fixed5x8, Black);
gdispFlush();
return false;
}
#endif // LCD_ENABLE
bool keyframe_disable_lcd_and_backlight(keyframe_animation_t* animation, visualizer_state_t* state) {
(void)animation;
(void)state;
#ifdef LCD_ENABLE
gdispSetPowerMode(powerOff);
#endif
#ifdef LCD_BACKLIGHT_ENABLE
lcd_backlight_hal_color(0, 0, 0);
#endif
return false;
}
bool keyframe_enable_lcd_and_backlight(keyframe_animation_t* animation, visualizer_state_t* state) {
(void)animation;
(void)state;
#ifdef LCD_ENABLE
gdispSetPowerMode(powerOn);
#endif
return false;
}
bool enable_visualization(keyframe_animation_t* animation, visualizer_state_t* state) {
(void)animation;
(void)state;
dprint("User visualizer inited\n");
visualizer_enabled = true;
return false;
}
// TODO: Optimize the stack size, this is probably way too big
static THD_WORKING_AREA(visualizerThreadStack, 1024);
static THD_FUNCTION(visualizerThread, arg) {
(void)arg;
event_listener_t event_listener;
chEvtRegister(&layer_changed_event, &event_listener, 0);
visualizer_keyboard_status_t initial_status = {
.default_layer = 0xFFFFFFFF,
.layer = 0xFFFFFFFF,
.leds = 0xFFFFFFFF,
.suspended = false,
};
visualizer_state_t state = {
.status = initial_status,
.current_lcd_color = 0,
#ifdef LCD_ENABLE
.font_fixed5x8 = gdispOpenFont("fixed_5x8"),
.font_dejavusansbold12 = gdispOpenFont("DejaVuSansBold12")
#endif
};
initialize_user_visualizer(&state);
state.prev_lcd_color = state.current_lcd_color;
#ifdef LCD_BACKLIGHT_ENABLE
lcd_backlight_color(
LCD_HUE(state.current_lcd_color),
LCD_SAT(state.current_lcd_color),
LCD_INT(state.current_lcd_color));
#endif
systime_t sleep_time = TIME_INFINITE;
systime_t current_time = chVTGetSystemTimeX();
while(true) {
systime_t new_time = chVTGetSystemTimeX();
systime_t delta = new_time - current_time;
current_time = new_time;
bool enabled = visualizer_enabled;
if (!same_status(&state.status, &current_status)) {
if (visualizer_enabled) {
if (current_status.suspended) {
stop_all_keyframe_animations();
visualizer_enabled = false;
state.status = current_status;
user_visualizer_suspend(&state);
}
else {
state.status = current_status;
update_user_visualizer_state(&state);
}
state.prev_lcd_color = state.current_lcd_color;
}
}
if (!enabled && state.status.suspended && current_status.suspended == false) {
// Setting the status to the initial status will force an update
// when the visualizer is enabled again
state.status = initial_status;
state.status.suspended = false;
stop_all_keyframe_animations();
user_visualizer_resume(&state);
state.prev_lcd_color = state.current_lcd_color;
}
sleep_time = TIME_INFINITE;
for (int i=0;i<MAX_SIMULTANEOUS_ANIMATIONS;i++) {
if (animations[i]) {
update_keyframe_animation(animations[i], &state, delta, &sleep_time);
}
}
// The animation can enable the visualizer
// And we might need to update the state when that happens
// so don't sleep
if (enabled != visualizer_enabled) {
sleep_time = 0;
}
systime_t after_update = chVTGetSystemTimeX();
unsigned update_delta = after_update - current_time;
if (sleep_time != TIME_INFINITE) {
if (sleep_time > update_delta) {
sleep_time -= update_delta;
}
else {
sleep_time = 0;
}
}
dprintf("Update took %d, last delta %d, sleep_time %d\n", update_delta, delta, sleep_time);
chEvtWaitOneTimeout(EVENT_MASK(0), sleep_time);
}
#ifdef LCD_ENABLE
gdispCloseFont(state.font_fixed5x8);
gdispCloseFont(state.font_dejavusansbold12);
#endif
}
void visualizer_init(void) {
#ifdef LCD_ENABLE
gfxInit();
#endif
#ifdef LCD_BACKLIGHT_ENABLE
lcd_backlight_init();
#endif
#ifdef USE_SERIAL_LINK
add_remote_objects(remote_objects, sizeof(remote_objects) / sizeof(remote_object_t*) );
#endif
// TODO: Make sure these works when either of these are disabled
LCDDisplay = gdispGetDisplay(0);
LEDDisplay = gdispGetDisplay(1);
// We are using a low priority thread, the idea is to have it run only
// when the main thread is sleeping during the matrix scanning
chEvtObjectInit(&layer_changed_event);
(void)chThdCreateStatic(visualizerThreadStack, sizeof(visualizerThreadStack),
LOWPRIO, visualizerThread, NULL);
}
void update_status(bool changed) {
if (changed) {
chEvtBroadcast(&layer_changed_event);
}
#ifdef USE_SERIAL_LINK
static systime_t last_update = 0;
systime_t current_update = chVTGetSystemTimeX();
systime_t delta = current_update - last_update;
if (changed || delta > MS2ST(10)) {
last_update = current_update;
visualizer_keyboard_status_t* r = begin_write_current_status();
*r = current_status;
end_write_current_status();
}
#endif
}
void visualizer_update(uint32_t default_state, uint32_t state, uint32_t leds) {
// Note that there's a small race condition here, the thread could read
// a state where one of these are set but not the other. But this should
// not really matter as it will be fixed during the next loop step.
// Alternatively a mutex could be used instead of the volatile variables
bool changed = false;
#ifdef USE_SERIAL_LINK
if (is_serial_link_connected ()) {
visualizer_keyboard_status_t* new_status = read_current_status();
if (new_status) {
if (!same_status(&current_status, new_status)) {
changed = true;
current_status = *new_status;
}
}
}
else {
#else
{
#endif
visualizer_keyboard_status_t new_status = {
.layer = state,
.default_layer = default_state,
.leds = leds,
.suspended = current_status.suspended,
};
if (!same_status(&current_status, &new_status)) {
changed = true;
current_status = new_status;
}
}
update_status(changed);
}
void visualizer_suspend(void) {
current_status.suspended = true;
update_status(true);
}
void visualizer_resume(void) {
current_status.suspended = false;
update_status(true);
}