1
0
Fork 0
forked from forks/qmk_firmware
qmk_firmware/keyboards/gboards/g/engine.c
Ryan cf935d97ae
Fix functions with empty params (#19647)
* Fix functions with empty params

* Found a bunch more
2023-01-20 16:21:17 +00:00

471 lines
12 KiB
C

/* This is a stripped down version of the Georgi engine meant for use with
* Ginni. As such serial-Steno features are disabled, chords are 16bits and
* crap is removed where possible
*
* Do not use this on anything other then Ginny if you want to be sane
*/
#include "engine.h"
// Chord state
C_SIZE cChord = 0; // Current Chord
int chordIndex = 0; // Keys in previousachord
C_SIZE pressed = 0; // number of held keys
C_SIZE chordState[32]; // Full Chord history
#define QWERBUF 24 // Size of chords to buffer for output
bool repeatFlag = false; // Should we repeat?
C_SIZE pChord = 0; // Previous Chord
C_SIZE stickyBits = 0; // Or'd with every incoming press
int pChordIndex = 0; // Keys in previousachord
C_SIZE pChordState[32]; // Previous chord sate
// Key Dicts
extern const struct keyEntry keyDict[];
extern const struct comboEntry cmbDict[];
extern const struct funcEntry funDict[];
extern const struct stringEntry strDict[];
extern const struct specialEntry spcDict[];
extern size_t specialLen;
extern size_t stringLen;
extern size_t funcsLen;
extern size_t keyLen;
extern size_t comboLen;
// Mode state
enum MODE { STENO = 0, QWERTY, COMMAND };
enum MODE pMode;
enum MODE cMode = QWERTY;
// Command State
#define MAX_CMD_BUF 20
uint8_t CMDLEN = 0;
uint8_t CMDBUF[MAX_CMD_BUF];
// Key Repeat state
bool inChord = false;
bool repEngaged = false;
uint16_t repTimer = 0;
#define REP_INIT_DELAY 750
#define REP_DELAY 25
// Mousekeys state
bool inMouse = false;
int8_t mousePress;
// All processing done at chordUp goes through here
void processKeysUp(void) {
// Check for mousekeys, this is release
#ifdef MOUSEKEY_ENABLE
if (inMouse) {
inMouse = false;
mousekey_off(mousePress);
mousekey_send();
}
#endif
// handle command mode
#ifdef COMMAND_MODE
if (cChord == COMMAND_MODE) {
# ifndef NO_DEBUG
uprintf("COMMAND Toggle\n");
# endif
if (cMode != COMMAND) { // Entering Command Mode
CMDLEN = 0;
pMode = cMode;
cMode = COMMAND;
} else { // Exiting Command Mode
cMode = pMode;
// Press all and release all
for (int i = 0; i < CMDLEN; i++) {
register_code(CMDBUF[i]);
}
clear_keyboard();
}
}
#endif
// Process and reset state
processChord();
cChord = pressed;
inChord = false;
chordIndex = 0;
clear_keyboard();
repEngaged = false;
for (int i = 0; i < 32; i++) chordState[i] = 0xFFFF;
}
// Update Chord State
bool process_record_kb(uint16_t keycode, keyrecord_t *record) {
// Check if we should run at all
if (process_engine_pre(cChord, keycode, record) == false) return true;
// Everything happens in here when steno keys come in.
// Bail on keyup
// Update key repeat timers
repTimer = timer_read();
bool pr = record->event.pressed;
// Switch on the press adding to chord
switch (keycode) {
ENGINE_CONFIG
default:
return true;
}
// Handle any postprocessing
// All keys up, send it!
if (inChord && !pr && (pressed & IN_CHORD_MASK) == 0) {
processKeysUp();
return false;
}
if (pressed == 0 && !pr) {
processKeysUp();
return false;
}
cChord |= pressed;
cChord = process_engine_post(cChord, keycode, record);
inChord = (cChord & IN_CHORD_MASK) != 0;
// Store previous state for fastQWER
if (pr) {
chordState[chordIndex] = cChord;
chordIndex++;
}
#ifndef NO_DEBUG
uprintf("Chord: %u\n", cChord);
#endif
return false;
}
void matrix_scan_user(void) {
// We abuse this for early sending of key
// Key repeat only on QWER/SYMB layers
if (cMode != QWERTY || !inChord) return;
// Check timers
#ifndef NO_HOLD
if (!repEngaged && timer_elapsed(repTimer) > REP_INIT_DELAY) {
// Process Key for report
processChord();
// Send report to host
send_keyboard_report();
repEngaged = true;
}
#endif
};
// Try and match cChord
C_SIZE mapKeys(C_SIZE chord, bool lookup) {
lookup = lookup || repEngaged;
#ifndef NO_DEBUG
if (!lookup) uprint("SENT!\n");
#endif
// Single key chords
for (int i = 0; i < keyLen; i++) {
if (keyDict[i].chord == chord) {
if (!lookup) SEND(keyDict[i].key);
return chord;
}
}
// strings
for (int i = 0; i < stringLen; i++) {
struct stringEntry fromPgm;
memcpy_P(&fromPgm, &strDict[i], sizeof(stringEntry_t));
if (fromPgm.chord == chord) {
if (!lookup) {
if (get_mods() & (MOD_LSFT | MOD_RSFT)) {
set_mods(get_mods() & ~(MOD_LSFT | MOD_RSFT));
set_oneshot_mods(MOD_LSFT);
}
send_string_P((PGM_P)(fromPgm.str));
}
return chord;
}
}
// combos
for (int i = 0; i < comboLen; i++) {
struct comboEntry fromPgm;
memcpy_P(&fromPgm, &cmbDict[i], sizeof(comboEntry_t));
if (fromPgm.chord == chord) {
#ifndef NO_DEBUG
uprintf("%d found combo\n", i);
#endif
if (!lookup) {
uint8_t comboKeys[COMBO_MAX];
memcpy_P(&comboKeys, fromPgm.keys, sizeof(uint8_t) * COMBO_MAX);
for (int j = 0; j < COMBO_MAX; j++)
#ifndef NO_DEBUG
uprintf("Combo [%u]: %u\n", j, comboKeys[j]);
#endif
for (int j = 0; (j < COMBO_MAX) && (comboKeys[j] != COMBO_END); j++) {
#ifndef NO_DEBUG
uprintf("Combo [%u]: %u\n", j, comboKeys[j]);
#endif
SEND(comboKeys[j]);
}
}
return chord;
}
}
// functions
for (int i = 0; i < funcsLen; i++) {
if (funDict[i].chord == chord) {
if (!lookup) funDict[i].act();
return chord;
}
}
// Special handling
for (int i = 0; i < specialLen; i++) {
if (spcDict[i].chord == chord) {
if (!lookup) {
uint16_t arg = spcDict[i].arg;
switch (spcDict[i].action) {
case SPEC_STICKY:
SET_STICKY(arg);
break;
case SPEC_REPEAT:
REPEAT();
break;
case SPEC_CLICK:
CLICK_MOUSE((uint8_t)arg);
break;
case SPEC_SWITCH:
SWITCH_LAYER(arg);
break;
default:
SEND_STRING("Invalid Special in Keymap");
}
}
return chord;
}
}
if ((chord & IN_CHORD_MASK) && (chord & IN_CHORD_MASK) != chord && mapKeys((chord & IN_CHORD_MASK), true) == (chord & IN_CHORD_MASK)) {
#ifndef NO_DEBUG
uprintf("Try with ignore mask:%u\n", (chord & IN_CHORD_MASK));
#endif
mapKeys((chord & ~IN_CHORD_MASK), lookup);
mapKeys((chord & IN_CHORD_MASK), lookup);
return chord;
}
#ifndef NO_DEBUG
uprintf("Reached end\n");
#endif
return 0;
}
// Traverse the chord history to a given point
// Returns the mask to use
void processChord(void) {
// Save the clean chord state
C_SIZE savedChord = cChord;
// Apply Stick Bits if needed
if (stickyBits != 0) {
cChord |= stickyBits;
for (int i = 0; i <= chordIndex; i++) chordState[i] |= stickyBits;
}
// First we test if a whole chord was passsed
// If so we just run it handling repeat logic
if (mapKeys(cChord, true) == cChord) {
mapKeys(cChord, false);
// Repeat logic
if (repeatFlag) {
#ifndef NO_DEBUG
uprintf("repeating?\n");
#endif
restoreState();
repeatFlag = false;
processChord();
} else {
saveState(cChord);
}
return;
}
C_SIZE next = process_chord_getnext(cChord);
if (next && next != cChord) {
#ifndef NO_DEBUG
uprintf("Trying next candidate: %u\n", next);
#endif
if (mapKeys(next, true) == next) {
mapKeys(next, false);
// Repeat logic
if (repeatFlag) {
#ifndef NO_DEBUG
uprintf("repeating?\n");
#endif
restoreState();
repeatFlag = false;
processChord();
} else {
saveState(cChord);
}
return;
}
}
#ifndef NO_DEBUG
uprintf("made it past the maw\n");
#endif
// Iterate through chord picking out the individual
// and longest chords
C_SIZE bufChords[QWERBUF];
int bufLen = 0;
C_SIZE mask = 0;
// We iterate over it multiple times to catch the longest
// chord. Then that gets addded to the mask and re run.
while (savedChord != mask) {
C_SIZE test = 0;
C_SIZE longestChord = 0;
for (int i = 0; i <= chordIndex; i++) {
cChord = chordState[i] & ~mask;
if (cChord == 0) continue;
test = mapKeys(cChord, true);
if (test != 0) {
longestChord = test;
}
}
mask |= longestChord;
bufChords[bufLen] = longestChord;
bufLen++;
// That's a loop of sorts, halt processing
if (bufLen >= QWERBUF) {
#ifndef NO_DEBUG
uprintf("looped. exiting");
#endif
return;
}
}
// Now that the buffer is populated, we run it
for (int i = 0; i < bufLen; i++) {
cChord = bufChords[i];
#ifndef NO_DEBUG
uprintf("sending: %u\n", cChord);
#endif
mapKeys(cChord, false);
}
// Save state in case of repeat
if (!repeatFlag) {
saveState(savedChord);
}
// Restore cChord for held repeat
cChord = savedChord;
return;
}
void saveState(C_SIZE cleanChord) {
pChord = cleanChord;
pChordIndex = chordIndex;
for (int i = 0; i < 32; i++) pChordState[i] = chordState[i];
}
void restoreState(void) {
cChord = pChord;
chordIndex = pChordIndex;
for (int i = 0; i < 32; i++) chordState[i] = pChordState[i];
}
// Macros for calling from keymap.c
void SEND(uint8_t kc) {
// Send Keycode, Does not work for Quantum Codes
if (cMode == COMMAND && CMDLEN < MAX_CMD_BUF) {
#ifndef NO_DEBUG
uprintf("CMD LEN: %d BUF: %d\n", CMDLEN, MAX_CMD_BUF);
#endif
CMDBUF[CMDLEN] = kc;
CMDLEN++;
}
if (cMode != COMMAND) register_code(kc);
return;
}
void REPEAT(void) {
if (cMode != QWERTY) return;
repeatFlag = true;
return;
}
void SET_STICKY(C_SIZE stick) {
stickyBits ^= stick;
return;
}
void CLICK_MOUSE(uint8_t kc) {
#ifdef MOUSEKEY_ENABLE
mousekey_on(kc);
mousekey_send();
// Store state for later use
inMouse = true;
mousePress = kc;
#endif
}
void SWITCH_LAYER(int layer) {
#ifndef NO_ACTION_LAYER
if (keymapsCount >= layer) {
layer_clear();
layer_on(layer);
}
#endif
}
uint8_t bitpop_v(C_SIZE val) {
#if C_SIZE == uint8_t
return bitpop(val);
#elif C_SIZE == uint16_t
return bitpop16(val);
#elif C_SIZE == uint32_t
return bitpop32(val);
#elif C_SIZE == uint64_t
uint8_t n = 0;
if (bits >> 32) {
bits >>= 32;
n += 32;
}
if (bits >> 16) {
bits >>= 16;
n += 16;
}
if (bits >> 8) {
bits >>= 8;
n += 8;
}
if (bits >> 4) {
bits >>= 4;
n += 4;
}
if (bits >> 2) {
bits >>= 2;
n += 2;
}
if (bits >> 1) {
bits >>= 1;
n += 1;
}
return n;
#else
# error unsupported C_SIZE
#endif
}
// See engine.h for what these hooks do
__attribute__((weak)) C_SIZE process_engine_post(C_SIZE cur_chord, uint16_t keycode, keyrecord_t *record) { return cur_chord; }
__attribute__((weak)) C_SIZE process_engine_pre(C_SIZE cur_chord, uint16_t keycode, keyrecord_t *record) { return true; }
__attribute__((weak)) C_SIZE process_chord_getnext(C_SIZE cur_chord) { return 0; }