1
0
Fork 0
forked from forks/qmk_firmware
qmk_firmware/quantum/matrix.c

314 lines
7.7 KiB
C
Raw Normal View History

2015-08-21 16:46:53 +02:00
/*
Copyright 2012 Jun Wako
Generated by planckkeyboard.com (2014 Jack Humbert)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* scan matrix
*/
#include <stdint.h>
#include <stdbool.h>
#include <avr/io.h>
#include <util/delay.h>
#include "print.h"
#include "debug.h"
#include "util.h"
#include "matrix.h"
#ifndef DEBOUNCE
# define DEBOUNCE 10
#endif
static uint8_t debouncing = DEBOUNCE;
/* matrix state(1:on, 0:off) */
static matrix_row_t matrix[MATRIX_ROWS];
static matrix_row_t matrix_debouncing[MATRIX_ROWS];
2015-09-14 04:10:01 +02:00
#if DIODE_DIRECTION == ROW2COL
2015-10-26 19:49:46 +01:00
static matrix_row_t matrix_reversed[MATRIX_COLS];
static matrix_row_t matrix_reversed_debouncing[MATRIX_COLS];
2015-09-14 04:10:01 +02:00
#endif
#if MATRIX_COLS > 16
#define SHIFTER 1UL
#else
#define SHIFTER 1
#endif
2015-08-21 16:46:53 +02:00
static matrix_row_t read_cols(void);
static void init_cols(void);
static void unselect_rows(void);
static void select_row(uint8_t row);
2015-10-26 21:32:37 +01:00
__attribute__ ((weak))
void matrix_init_quantum(void) {
2015-10-26 21:32:37 +01:00
}
2015-10-26 21:32:37 +01:00
__attribute__ ((weak))
void matrix_scan_quantum(void) {
2015-10-26 21:32:37 +01:00
}
2015-10-26 21:32:37 +01:00
2015-08-21 16:46:53 +02:00
inline
uint8_t matrix_rows(void)
{
return MATRIX_ROWS;
}
inline
uint8_t matrix_cols(void)
{
return MATRIX_COLS;
}
void matrix_init(void)
{
// To use PORTF disable JTAG with writing JTD bit twice within four cycles.
MCUCR |= (1<<JTD);
MCUCR |= (1<<JTD);
// initialize row and col
unselect_rows();
init_cols();
// initialize matrix state: all keys off
for (uint8_t i=0; i < MATRIX_ROWS; i++) {
matrix[i] = 0;
matrix_debouncing[i] = 0;
}
2015-10-26 19:49:46 +01:00
matrix_init_quantum();
2015-08-21 16:46:53 +02:00
}
uint8_t matrix_scan(void)
{
2015-10-26 19:49:46 +01:00
2015-09-14 04:10:01 +02:00
#if DIODE_DIRECTION == COL2ROW
2015-08-21 16:46:53 +02:00
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
select_row(i);
_delay_us(30); // without this wait read unstable value.
matrix_row_t cols = read_cols();
if (matrix_debouncing[i] != cols) {
matrix_debouncing[i] = cols;
if (debouncing) {
debug("bounce!: "); debug_hex(debouncing); debug("\n");
}
debouncing = DEBOUNCE;
}
unselect_rows();
}
if (debouncing) {
if (--debouncing) {
_delay_ms(1);
} else {
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
matrix[i] = matrix_debouncing[i];
}
}
}
2015-09-14 04:10:01 +02:00
#else
for (uint8_t i = 0; i < MATRIX_COLS; i++) {
select_row(i);
_delay_us(30); // without this wait read unstable value.
matrix_row_t rows = read_cols();
if (matrix_reversed_debouncing[i] != rows) {
matrix_reversed_debouncing[i] = rows;
if (debouncing) {
debug("bounce!: "); debug_hex(debouncing); debug("\n");
}
debouncing = DEBOUNCE;
}
unselect_rows();
}
if (debouncing) {
if (--debouncing) {
_delay_ms(1);
} else {
for (uint8_t i = 0; i < MATRIX_COLS; i++) {
matrix_reversed[i] = matrix_reversed_debouncing[i];
}
}
}
for (uint8_t y = 0; y < MATRIX_ROWS; y++) {
matrix_row_t row = 0;
for (uint8_t x = 0; x < MATRIX_COLS; x++) {
row |= ((matrix_reversed[x] & (1<<y)) >> y) << x;
}
matrix[y] = row;
}
#endif
2015-08-21 16:46:53 +02:00
matrix_scan_quantum();
2015-10-26 19:49:46 +01:00
2015-08-21 16:46:53 +02:00
return 1;
}
bool matrix_is_modified(void)
{
if (debouncing) return false;
return true;
}
inline
bool matrix_is_on(uint8_t row, uint8_t col)
{
return (matrix[row] & ((matrix_row_t)1<col));
}
inline
matrix_row_t matrix_get_row(uint8_t row)
{
return matrix[row];
}
void matrix_print(void)
{
print("\nr/c 0123456789ABCDEF\n");
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
phex(row); print(": ");
pbin_reverse16(matrix_get_row(row));
print("\n");
}
}
uint8_t matrix_key_count(void)
{
uint8_t count = 0;
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
count += bitpop16(matrix[i]);
}
return count;
}
static void init_cols(void)
{
int B = 0, C = 0, D = 0, E = 0, F = 0;
2015-09-14 04:10:01 +02:00
#if DIODE_DIRECTION == COL2ROW
for(int x = 0; x < MATRIX_COLS; x++) {
2015-08-21 16:46:53 +02:00
int col = COLS[x];
2015-09-14 04:10:01 +02:00
#else
for(int x = 0; x < MATRIX_ROWS; x++) {
int col = ROWS[x];
#endif
2015-08-21 16:46:53 +02:00
if ((col & 0xF0) == 0x20) {
B |= (1<<(col & 0x0F));
} else if ((col & 0xF0) == 0x30) {
C |= (1<<(col & 0x0F));
} else if ((col & 0xF0) == 0x40) {
D |= (1<<(col & 0x0F));
} else if ((col & 0xF0) == 0x50) {
E |= (1<<(col & 0x0F));
} else if ((col & 0xF0) == 0x60) {
F |= (1<<(col & 0x0F));
}
}
DDRB &= ~(B); PORTB |= (B);
DDRC &= ~(C); PORTC |= (C);
DDRD &= ~(D); PORTD |= (D);
DDRE &= ~(E); PORTE |= (E);
DDRF &= ~(F); PORTF |= (F);
}
static matrix_row_t read_cols(void)
{
matrix_row_t result = 0;
2015-09-14 04:10:01 +02:00
#if DIODE_DIRECTION == COL2ROW
2015-08-21 16:46:53 +02:00
for(int x = 0; x < MATRIX_COLS; x++) {
int col = COLS[x];
2015-09-14 04:10:01 +02:00
#else
for(int x = 0; x < MATRIX_ROWS; x++) {
int col = ROWS[x];
#endif
2015-08-21 16:46:53 +02:00
if ((col & 0xF0) == 0x20) {
result |= (PINB&(1<<(col & 0x0F)) ? 0 : (SHIFTER<<x));
2015-08-21 16:46:53 +02:00
} else if ((col & 0xF0) == 0x30) {
result |= (PINC&(1<<(col & 0x0F)) ? 0 : (SHIFTER<<x));
2015-08-21 16:46:53 +02:00
} else if ((col & 0xF0) == 0x40) {
result |= (PIND&(1<<(col & 0x0F)) ? 0 : (SHIFTER<<x));
2015-08-21 16:46:53 +02:00
} else if ((col & 0xF0) == 0x50) {
result |= (PINE&(1<<(col & 0x0F)) ? 0 : (SHIFTER<<x));
2015-08-21 16:46:53 +02:00
} else if ((col & 0xF0) == 0x60) {
result |= (PINF&(1<<(col & 0x0F)) ? 0 : (SHIFTER<<x));
2015-08-21 16:46:53 +02:00
}
}
return result;
}
static void unselect_rows(void)
{
int B = 0, C = 0, D = 0, E = 0, F = 0;
2015-09-14 04:10:01 +02:00
#if DIODE_DIRECTION == COL2ROW
2015-08-21 16:46:53 +02:00
for(int x = 0; x < MATRIX_ROWS; x++) {
int row = ROWS[x];
2015-09-14 04:10:01 +02:00
#else
for(int x = 0; x < MATRIX_COLS; x++) {
int row = COLS[x];
#endif
2015-08-21 16:46:53 +02:00
if ((row & 0xF0) == 0x20) {
B |= (1<<(row & 0x0F));
} else if ((row & 0xF0) == 0x30) {
C |= (1<<(row & 0x0F));
} else if ((row & 0xF0) == 0x40) {
D |= (1<<(row & 0x0F));
} else if ((row & 0xF0) == 0x50) {
E |= (1<<(row & 0x0F));
} else if ((row & 0xF0) == 0x60) {
F |= (1<<(row & 0x0F));
}
}
DDRB &= ~(B); PORTB |= (B);
DDRC &= ~(C); PORTC |= (C);
DDRD &= ~(D); PORTD |= (D);
DDRE &= ~(E); PORTE |= (E);
DDRF &= ~(F); PORTF |= (F);
}
static void select_row(uint8_t row)
{
2015-09-14 04:10:01 +02:00
#if DIODE_DIRECTION == COL2ROW
2015-08-21 16:46:53 +02:00
int row_pin = ROWS[row];
2015-09-14 04:10:01 +02:00
#else
int row_pin = COLS[row];
#endif
2015-08-21 16:46:53 +02:00
if ((row_pin & 0xF0) == 0x20) {
DDRB |= (1<<(row_pin & 0x0F));
PORTB &= ~(1<<(row_pin & 0x0F));
} else if ((row_pin & 0xF0) == 0x30) {
DDRC |= (1<<(row_pin & 0x0F));
PORTC &= ~(1<<(row_pin & 0x0F));
} else if ((row_pin & 0xF0) == 0x40) {
DDRD |= (1<<(row_pin & 0x0F));
PORTD &= ~(1<<(row_pin & 0x0F));
} else if ((row_pin & 0xF0) == 0x50) {
DDRE |= (1<<(row_pin & 0x0F));
PORTE &= ~(1<<(row_pin & 0x0F));
} else if ((row_pin & 0xF0) == 0x60) {
DDRF |= (1<<(row_pin & 0x0F));
PORTF &= ~(1<<(row_pin & 0x0F));
}
}