forked from forks/qmk_firmware
1a8c0dd22d
* implements leader key for planck experimental * allows override of leader timeout * adds ability to use the leader key in seq * fixes leader keycode * adds chording prototype * fixes keycode detection * moves music mode to quantum.c * disables chording by default * updates process_action functions to return bool
314 lines
7.7 KiB
C
314 lines
7.7 KiB
C
/*
|
|
Copyright 2012 Jun Wako
|
|
Generated by planckkeyboard.com (2014 Jack Humbert)
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
* scan matrix
|
|
*/
|
|
#include <stdint.h>
|
|
#include <stdbool.h>
|
|
#include <avr/io.h>
|
|
#include <util/delay.h>
|
|
#include "print.h"
|
|
#include "debug.h"
|
|
#include "util.h"
|
|
#include "matrix.h"
|
|
|
|
#ifndef DEBOUNCE
|
|
# define DEBOUNCE 10
|
|
#endif
|
|
static uint8_t debouncing = DEBOUNCE;
|
|
|
|
/* matrix state(1:on, 0:off) */
|
|
static matrix_row_t matrix[MATRIX_ROWS];
|
|
static matrix_row_t matrix_debouncing[MATRIX_ROWS];
|
|
|
|
#if DIODE_DIRECTION == ROW2COL
|
|
static matrix_row_t matrix_reversed[MATRIX_COLS];
|
|
static matrix_row_t matrix_reversed_debouncing[MATRIX_COLS];
|
|
#endif
|
|
|
|
|
|
#if MATRIX_COLS > 16
|
|
#define SHIFTER 1UL
|
|
#else
|
|
#define SHIFTER 1
|
|
#endif
|
|
|
|
static matrix_row_t read_cols(void);
|
|
static void init_cols(void);
|
|
static void unselect_rows(void);
|
|
static void select_row(uint8_t row);
|
|
|
|
__attribute__ ((weak))
|
|
void matrix_init_quantum(void) {
|
|
|
|
}
|
|
|
|
__attribute__ ((weak))
|
|
void matrix_scan_quantum(void) {
|
|
|
|
}
|
|
|
|
inline
|
|
uint8_t matrix_rows(void)
|
|
{
|
|
return MATRIX_ROWS;
|
|
}
|
|
|
|
inline
|
|
uint8_t matrix_cols(void)
|
|
{
|
|
return MATRIX_COLS;
|
|
}
|
|
|
|
void matrix_init(void)
|
|
{
|
|
// To use PORTF disable JTAG with writing JTD bit twice within four cycles.
|
|
MCUCR |= (1<<JTD);
|
|
MCUCR |= (1<<JTD);
|
|
|
|
|
|
// initialize row and col
|
|
unselect_rows();
|
|
init_cols();
|
|
|
|
// initialize matrix state: all keys off
|
|
for (uint8_t i=0; i < MATRIX_ROWS; i++) {
|
|
matrix[i] = 0;
|
|
matrix_debouncing[i] = 0;
|
|
}
|
|
|
|
matrix_init_quantum();
|
|
}
|
|
|
|
|
|
uint8_t matrix_scan(void)
|
|
{
|
|
|
|
#if DIODE_DIRECTION == COL2ROW
|
|
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
|
|
select_row(i);
|
|
_delay_us(30); // without this wait read unstable value.
|
|
matrix_row_t cols = read_cols();
|
|
if (matrix_debouncing[i] != cols) {
|
|
matrix_debouncing[i] = cols;
|
|
if (debouncing) {
|
|
debug("bounce!: "); debug_hex(debouncing); debug("\n");
|
|
}
|
|
debouncing = DEBOUNCE;
|
|
}
|
|
unselect_rows();
|
|
}
|
|
|
|
if (debouncing) {
|
|
if (--debouncing) {
|
|
_delay_ms(1);
|
|
} else {
|
|
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
|
|
matrix[i] = matrix_debouncing[i];
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
for (uint8_t i = 0; i < MATRIX_COLS; i++) {
|
|
select_row(i);
|
|
_delay_us(30); // without this wait read unstable value.
|
|
matrix_row_t rows = read_cols();
|
|
if (matrix_reversed_debouncing[i] != rows) {
|
|
matrix_reversed_debouncing[i] = rows;
|
|
if (debouncing) {
|
|
debug("bounce!: "); debug_hex(debouncing); debug("\n");
|
|
}
|
|
debouncing = DEBOUNCE;
|
|
}
|
|
unselect_rows();
|
|
}
|
|
|
|
if (debouncing) {
|
|
if (--debouncing) {
|
|
_delay_ms(1);
|
|
} else {
|
|
for (uint8_t i = 0; i < MATRIX_COLS; i++) {
|
|
matrix_reversed[i] = matrix_reversed_debouncing[i];
|
|
}
|
|
}
|
|
}
|
|
for (uint8_t y = 0; y < MATRIX_ROWS; y++) {
|
|
matrix_row_t row = 0;
|
|
for (uint8_t x = 0; x < MATRIX_COLS; x++) {
|
|
row |= ((matrix_reversed[x] & (1<<y)) >> y) << x;
|
|
}
|
|
matrix[y] = row;
|
|
}
|
|
#endif
|
|
|
|
matrix_scan_quantum();
|
|
|
|
return 1;
|
|
}
|
|
|
|
bool matrix_is_modified(void)
|
|
{
|
|
if (debouncing) return false;
|
|
return true;
|
|
}
|
|
|
|
inline
|
|
bool matrix_is_on(uint8_t row, uint8_t col)
|
|
{
|
|
return (matrix[row] & ((matrix_row_t)1<col));
|
|
}
|
|
|
|
inline
|
|
matrix_row_t matrix_get_row(uint8_t row)
|
|
{
|
|
return matrix[row];
|
|
}
|
|
|
|
void matrix_print(void)
|
|
{
|
|
print("\nr/c 0123456789ABCDEF\n");
|
|
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
|
|
phex(row); print(": ");
|
|
pbin_reverse16(matrix_get_row(row));
|
|
print("\n");
|
|
}
|
|
}
|
|
|
|
uint8_t matrix_key_count(void)
|
|
{
|
|
uint8_t count = 0;
|
|
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
|
|
count += bitpop16(matrix[i]);
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static void init_cols(void)
|
|
{
|
|
int B = 0, C = 0, D = 0, E = 0, F = 0;
|
|
|
|
#if DIODE_DIRECTION == COL2ROW
|
|
for(int x = 0; x < MATRIX_COLS; x++) {
|
|
int col = COLS[x];
|
|
#else
|
|
for(int x = 0; x < MATRIX_ROWS; x++) {
|
|
int col = ROWS[x];
|
|
#endif
|
|
if ((col & 0xF0) == 0x20) {
|
|
B |= (1<<(col & 0x0F));
|
|
} else if ((col & 0xF0) == 0x30) {
|
|
C |= (1<<(col & 0x0F));
|
|
} else if ((col & 0xF0) == 0x40) {
|
|
D |= (1<<(col & 0x0F));
|
|
} else if ((col & 0xF0) == 0x50) {
|
|
E |= (1<<(col & 0x0F));
|
|
} else if ((col & 0xF0) == 0x60) {
|
|
F |= (1<<(col & 0x0F));
|
|
}
|
|
}
|
|
DDRB &= ~(B); PORTB |= (B);
|
|
DDRC &= ~(C); PORTC |= (C);
|
|
DDRD &= ~(D); PORTD |= (D);
|
|
DDRE &= ~(E); PORTE |= (E);
|
|
DDRF &= ~(F); PORTF |= (F);
|
|
}
|
|
|
|
static matrix_row_t read_cols(void)
|
|
{
|
|
matrix_row_t result = 0;
|
|
|
|
#if DIODE_DIRECTION == COL2ROW
|
|
for(int x = 0; x < MATRIX_COLS; x++) {
|
|
int col = COLS[x];
|
|
#else
|
|
for(int x = 0; x < MATRIX_ROWS; x++) {
|
|
int col = ROWS[x];
|
|
#endif
|
|
|
|
if ((col & 0xF0) == 0x20) {
|
|
result |= (PINB&(1<<(col & 0x0F)) ? 0 : (SHIFTER<<x));
|
|
} else if ((col & 0xF0) == 0x30) {
|
|
result |= (PINC&(1<<(col & 0x0F)) ? 0 : (SHIFTER<<x));
|
|
} else if ((col & 0xF0) == 0x40) {
|
|
result |= (PIND&(1<<(col & 0x0F)) ? 0 : (SHIFTER<<x));
|
|
} else if ((col & 0xF0) == 0x50) {
|
|
result |= (PINE&(1<<(col & 0x0F)) ? 0 : (SHIFTER<<x));
|
|
} else if ((col & 0xF0) == 0x60) {
|
|
result |= (PINF&(1<<(col & 0x0F)) ? 0 : (SHIFTER<<x));
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static void unselect_rows(void)
|
|
{
|
|
int B = 0, C = 0, D = 0, E = 0, F = 0;
|
|
|
|
#if DIODE_DIRECTION == COL2ROW
|
|
for(int x = 0; x < MATRIX_ROWS; x++) {
|
|
int row = ROWS[x];
|
|
#else
|
|
for(int x = 0; x < MATRIX_COLS; x++) {
|
|
int row = COLS[x];
|
|
#endif
|
|
if ((row & 0xF0) == 0x20) {
|
|
B |= (1<<(row & 0x0F));
|
|
} else if ((row & 0xF0) == 0x30) {
|
|
C |= (1<<(row & 0x0F));
|
|
} else if ((row & 0xF0) == 0x40) {
|
|
D |= (1<<(row & 0x0F));
|
|
} else if ((row & 0xF0) == 0x50) {
|
|
E |= (1<<(row & 0x0F));
|
|
} else if ((row & 0xF0) == 0x60) {
|
|
F |= (1<<(row & 0x0F));
|
|
}
|
|
}
|
|
DDRB &= ~(B); PORTB |= (B);
|
|
DDRC &= ~(C); PORTC |= (C);
|
|
DDRD &= ~(D); PORTD |= (D);
|
|
DDRE &= ~(E); PORTE |= (E);
|
|
DDRF &= ~(F); PORTF |= (F);
|
|
}
|
|
|
|
static void select_row(uint8_t row)
|
|
{
|
|
|
|
#if DIODE_DIRECTION == COL2ROW
|
|
int row_pin = ROWS[row];
|
|
#else
|
|
int row_pin = COLS[row];
|
|
#endif
|
|
|
|
if ((row_pin & 0xF0) == 0x20) {
|
|
DDRB |= (1<<(row_pin & 0x0F));
|
|
PORTB &= ~(1<<(row_pin & 0x0F));
|
|
} else if ((row_pin & 0xF0) == 0x30) {
|
|
DDRC |= (1<<(row_pin & 0x0F));
|
|
PORTC &= ~(1<<(row_pin & 0x0F));
|
|
} else if ((row_pin & 0xF0) == 0x40) {
|
|
DDRD |= (1<<(row_pin & 0x0F));
|
|
PORTD &= ~(1<<(row_pin & 0x0F));
|
|
} else if ((row_pin & 0xF0) == 0x50) {
|
|
DDRE |= (1<<(row_pin & 0x0F));
|
|
PORTE &= ~(1<<(row_pin & 0x0F));
|
|
} else if ((row_pin & 0xF0) == 0x60) {
|
|
DDRF |= (1<<(row_pin & 0x0F));
|
|
PORTF &= ~(1<<(row_pin & 0x0F));
|
|
}
|
|
} |