forked from forks/qmk_firmware
180 lines
7.1 KiB
Markdown
180 lines
7.1 KiB
Markdown
Build Firmware and Program Controller
|
|
=====================================
|
|
|
|
|
|
Download and Install
|
|
--------------------
|
|
### 1. Install Tools
|
|
First, you need tools to build firmware and program your controller. I assume you are on Windows here.
|
|
|
|
1. **Toolchain** Install [WinAVR][winavr]. This is old but works well for this purpose. `WinAVR` is a tool set to build firmware including C compiler(gcc) and make commands. You can use [CrossPack][crosspack] instead if you are on Mac.
|
|
|
|
2. **Programmer** Install [Atmel FLIP][flip]. `FLIP` is a tool to program(load) firmware into AVR controller via DFU bootloader. AVR USB chips including ATmega32U4 has DFU bootloader by factory default. You can also use [dfu-programmer][dfu-prog] instead if you are on Mac or Linux.
|
|
|
|
3. **Driver** At first time you start DFU bootloader on Chip 'Found New Hardware Wizard' will come up on Windows. If you install device driver properly you can find chip name like 'ATmega32U4' under 'LibUSB-Win32 Devices' tree on 'Device Manager'. If not you shall need to update its driver on 'Device Manager'. You will find the driver in `FLIP` install directory like: C:\Program Files (x86)\Atmel\Flip 3.4.5\usb\. If you use `dfu-programmer` install its driver.
|
|
|
|
If you use PJRC Teensy you don't need step 2 and 3 above, just get [Teensy loader][teensy-loader].
|
|
|
|
|
|
### 2. Download source
|
|
You can find firmware source at github:
|
|
|
|
- <https://github.com/tmk/tmk_keyboard>
|
|
|
|
If you are familiar with `Git` tools you are recommended to use it but you can also download zip archive from:
|
|
|
|
- <https://github.com/tmk/tmk_keyboard/archive/master.zip>
|
|
|
|
|
|
Build firmware
|
|
--------------
|
|
### 1. Open terminal
|
|
Open terminal window to get access to commands. You can use `cmd` in Windows or `Terminal.app` on Mac OSX. In Windows press `Windows` key and `R` then enter `cmd` in 'Run command' dialog showing up.
|
|
|
|
### 2. Change directory
|
|
Move to project directory in the firmware source.
|
|
|
|
cd tmk_keyboard/{'keyboard' or 'converter'}/<project>
|
|
|
|
### 3. Make
|
|
Build firmware using GNU `make` command. You'll see `<project>_<variant>.hex` file in that directory unless something unexpected occurs in build process.
|
|
|
|
|
|
mkae -f Makefile.<variant> clean
|
|
make -f Makefile.<variant>
|
|
|
|
|
|
|
|
|
|
Program Controller
|
|
------------------
|
|
Now you have **hex** file to program on current directory. This **hex** is only needed to program your controller, other files are used for development and you may leave and forget them.
|
|
|
|
### 1. Start bootloader
|
|
How to program controller depends on controller chip and its board design. To program AVR USB chips you'll need to start it up in bootloader mode. Most of boards with the chip have a push button to let bootloader come up. Consult with your controller board manual.
|
|
|
|
### 2. Program with DFU bootloader
|
|
Stock AVR USB chip including ATmega32U4 has DFU bootloader by factory default. `FLIP` is a DFU programmer on Windows offered by Atmel. Open source command line tool `dfu-programmer` also supports AVR chips, it runs on Linux, Mac OSX and even Windows.
|
|
|
|
To program AVR chip with DFU bootloader use `FLIP` or `dfu-programmer`.
|
|
If you have a proper program command in `Makefile` just type this.
|
|
|
|
`FLIP` has two version of tool, GUI app and command line program. If you want GUI see tutorial below.
|
|
To use command line tool run this command. Note that you need to set PATH variable properly.
|
|
|
|
$ make -f Makefile.<variant> flip
|
|
|
|
Or to program with `dfu-programmer` run:
|
|
|
|
$ make -f Makefile.<variant> dfu
|
|
|
|
#### FLIP GUI tutorial
|
|
1. On menu bar click Device -> Select, then. `ATmega32u4`.
|
|
2. On menu bar click Settings -> Communication -> USB, then click 'Open' button on 'USB Port Connection' dialog.
|
|
At this point you'll see greyouted widgets on the app get colored and ready.
|
|
|
|
3. On menu bar click File -> Load HEX File, then select your firmware hex file on File Selector dialog.
|
|
4. On 'Operations Flow' panel click 'Run' button to load the firmware binary to the chip. Note that you should keep 'Erase', 'Blank Check', 'Program' and 'Verify' check boxes selected.
|
|
5. Re-plug USB cord or click 'Start Application' button to restart your controller.
|
|
Done.
|
|
|
|
See also these instaructions if you need.
|
|
|
|
- <http://code.google.com/p/micropendous/wiki/LoadingFirmwareWithFLIP>
|
|
- <http://www.atmel.com/Images/doc7769.pdf>
|
|
|
|
|
|
### 3. Program with Teensy Loader
|
|
If you have PJRC Teensy see instruction of `Teensy Loader`.
|
|
|
|
- <http://www.pjrc.com/teensy/loader.html>
|
|
|
|
Or use this command if you have command line version of Teensy Loader installed.
|
|
|
|
$ make -f Makefile.<variant> teensy
|
|
|
|
|
|
### 4. Program with Other programmer
|
|
You may want to use other programmer like `avrdude` with AVRISPmkII, Aruduino or USBasp. In that case you can still use make target `program` for build with configuring `PROGRAM_CMD` in Makefile.
|
|
|
|
$ make -f Makefile.<variant> program
|
|
|
|
|
|
[winavr]: http://winavr.sourceforge.net/
|
|
[crosspack]: http://www.obdev.at/products/crosspack/index.html
|
|
[flip]: http://www.atmel.com/tools/FLIP.aspx
|
|
[dfu-prog]: http://dfu-programmer.sourceforge.net/
|
|
[teensy-loader]:http://www.pjrc.com/teensy/loader.html
|
|
|
|
|
|
|
|
Makefile Options
|
|
----------------
|
|
### 1. MCU and Frequency.
|
|
|
|
MCU = atmega32u4 # Teensy 2.0
|
|
#MCU = at90usb1286 # Teensy++ 2.0
|
|
F_CPU = 16000000
|
|
|
|
# Boot Section Size in *bytes*
|
|
# Teensy halfKay 512
|
|
# Atmel DFU loader 4096
|
|
# LUFA bootloader 4096
|
|
OPT_DEFS += -DBOOTLOADER_SIZE=4096
|
|
|
|
### 2. Features
|
|
Optional. Note that ***comment out*** to disable them.
|
|
|
|
BOOTMAGIC_ENABLE = yes # Virtual DIP switch configuration(+1000)
|
|
MOUSEKEY_ENABLE = yes # Mouse keys(+4700)
|
|
EXTRAKEY_ENABLE = yes # Audio control and System control(+450)
|
|
CONSOLE_ENABLE = yes # Console for debug(+400)
|
|
COMMAND_ENABLE = yes # Commands for debug and configuration
|
|
SLEEP_LED_ENABLE = yes # Breathing sleep LED during USB suspend
|
|
#NKRO_ENABLE = yes # USB Nkey Rollover - not yet supported in LUFA
|
|
|
|
### 3. Programmer
|
|
Optional. Set proper command for your controller, bootloader and programmer. This command can be used with `make program`. Not needed if you use `FLIP`, `dfu-programmer` or `Teesy Loader`.
|
|
|
|
# avrdude with AVRISPmkII
|
|
PROGRAM_CMD = avrdude -p $(MCU) -c avrispmkII -P USB -U flash:w:$(TARGET).hex
|
|
|
|
# avrdude with USBaspLoader
|
|
PROGRAM_CMD = avrdude -p $(MCU) -c usbasp -U flash:w:$(TARGET).hex
|
|
|
|
# avrdude with arduino
|
|
PROGRAM_CMD = avrdude -p $(MCU) -c arduino -P COM1 -b 57600 -U flash:w:$(TARGET).hex
|
|
|
|
|
|
|
|
Config.h Options
|
|
----------------
|
|
### 1. Magic command key combination
|
|
|
|
#define IS_COMMAND() (keyboard_report->mods == (MOD_BIT(KB_LSHIFT) | MOD_BIT(KB_RSHIFT)))
|
|
|
|
### 2. Mechanical Locking Support for CapsLock
|
|
|
|
/* Mechanical locking CapsLock support. Use KC_LCAP instead of KC_CAPS in keymap */
|
|
#define CAPSLOCK_LOCKING_ENABLE
|
|
/* Locking CapsLock resynchronize hack */
|
|
#define CAPSLOCK_LOCKING_RESYNC_ENABLE
|
|
|
|
### 3. Disable Debug and Print
|
|
|
|
/* disable debug print */
|
|
#define NO_DEBUG
|
|
|
|
/* disable print */
|
|
#define NO_PRINT
|
|
|
|
### 4. Disable Action Features
|
|
|
|
#define NO_ACTION_LAYER
|
|
#define NO_ACTION_TAPPING
|
|
#define NO_ACTION_ONESHOT
|
|
#define NO_ACTION_MACRO
|
|
#define NO_ACTION_FUNCTION
|
|
|
|
***TBD***
|